18,347 research outputs found

    Reflectance Transformation Imaging (RTI) System for Ancient Documentary Artefacts

    No full text
    This tutorial summarises our uses of reflectance transformation imaging in archaeological contexts. It introduces the UK AHRC funded project reflectance Transformation Imaging for Anciant Documentary Artefacts and demonstrates imaging methodologies

    Light field super resolution through controlled micro-shifts of light field sensor

    Get PDF
    Light field cameras enable new capabilities, such as post-capture refocusing and aperture control, through capturing directional and spatial distribution of light rays in space. Micro-lens array based light field camera design is often preferred due to its light transmission efficiency, cost-effectiveness and compactness. One drawback of the micro-lens array based light field cameras is low spatial resolution due to the fact that a single sensor is shared to capture both spatial and angular information. To address the low spatial resolution issue, we present a light field imaging approach, where multiple light fields are captured and fused to improve the spatial resolution. For each capture, the light field sensor is shifted by a pre-determined fraction of a micro-lens size using an XY translation stage for optimal performance

    Innovative Techniques for Digitizing and Restoring Deteriorated Historical Documents

    Get PDF
    Recent large-scale document digitization initiatives have created new modes of access to modern library collections with the development of new hardware and software technologies. Most commonly, these digitization projects focus on accurately scanning bound texts, some reaching an efficiency of more than one million volumes per year. While vast digital collections are changing the way users access texts, current scanning paradigms can not handle many non-standard materials. Documentation forms such as manuscripts, scrolls, codices, deteriorated film, epigraphy, and rock art all hold a wealth of human knowledge in physical forms not accessible by standard book scanning technologies. This great omission motivates the development of new technology, presented by this thesis, that is not-only effective with deteriorated bound works, damaged manuscripts, and disintegrating photonegatives but also easily utilized by non-technical staff. First, a novel point light source calibration technique is presented that can be performed by library staff. Then, a photometric correction technique which uses known illumination and surface properties to remove shading distortions in deteriorated document images can be automatically applied. To complete the restoration process, a geometric correction is applied. Also unique to this work is the development of an image-based uncalibrated document scanner that utilizes the transmissivity of document substrates. This scanner extracts intrinsic document color information from one or both sides of a document. Simultaneously, the document shape is estimated to obtain distortion information. Lastly, this thesis provides a restoration framework for damaged photographic negatives that corrects photometric and geometric distortions. Current restoration techniques for the discussed form of negatives require physical manipulation to the photograph. The novel acquisition and restoration system presented here provides the first known solution to digitize and restore deteriorated photographic negatives without damaging the original negative in any way. This thesis work develops new methods of document scanning and restoration suitable for wide-scale deployment. By creating easy to access technologies, library staff can implement their own scanning initiatives and large-scale scanning projects can expand their current document-sets

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques

    From ”Sapienza” to “Sapienza, State Archives in Rome”. A looping effect bringing back to the original source communication and culture by innovative and low cost 3D surveying, imaging systems and GIS applications

    Get PDF
    Applicazione di tecnologie mensorie integrate Low Cost,web GIS,applicazione di tecniche di Computational photography per la comunicazione e condivisione dei dati, sistemi di Cloud computing.Archiviazione Grandi DatiHigh Quality survey models, realized by multiple Low Cost methods and technologies, as a container to sharing Cultural and Archival Heritage, this is the aim guiding our research, here described in its primary applications. The SAPIENZA building, a XVI century masterpiece that represented the first unified headquarters of University in Rome, plays since year 1936, when the University moved to its newly edified campus, the role of the main venue for the State Archives. By the collaboration of a group of students of the Architecture Faculty, some integrated survey methods were applied on the monument with success. The beginning was the topographic survey, creating a reference on ground and along the monument for the upcoming applications, a GNNS RTK survey followed georeferencing points on the internal courtyard. Dense stereo matching photogrammetry is nowadays an accepted method for generating 3D survey models, accurate and scalable; it often substitutes 3D laser scanning for its low cost, so that it became our choice. Some 360°shots were planned for creating panoramic views of the double portico from the courtyard, plus additional single shots of some lateral spans and of pillars facing the court, as a single operation with a double finality: to create linked panotours with hotspots to web-linked databases, and 3D textured and georeferenced surface models, allowing to study the harmonic proportions of the classical architectural order. The use of free web Gis platforms, to load the work in Google Earth and the realization of low cost 3D prototypes of some representative parts, has been even performed
    • …
    corecore