1,504 research outputs found

    Using mobility information to perform a feasibility study and the evaluation of spatio-temporal energy demanded by an electric taxi fleet

    Get PDF
    Half of the global population already lives in urban areas, facing to the problem of air pollution mainly caused by the transportation system. The recently worsening of urban air quality has a direct impact on the human health. Replacing today’s internal combustion engine vehicles with electric ones in public fleets could provide a deep impact on the air quality in the cities. In this paper, real mobility information is used as decision support for the taxi fleet manager to promote the adoption of electric taxi cabs in the city of San Francisco, USA. Firstly, mobility characteristics and energy requirements of a single taxi are analyzed. Then, the results are generalized to all vehicles from the taxi fleet. An electrificability rate of the taxi fleet is generated, providing information about the number of current trips that could be performed by electric taxis without modifying the current driver mobility patterns. The analysis results reveal that 75.2% of the current taxis could be replaced by electric vehicles, considering a current standard battery capacity (24–30 kWh). This value can increase significantly (to 100%), taking into account the evolution of the price and capacity of the batteries installed in the last models of electric vehicles that are coming to the market. The economic analysis shows that the purchasing costs of an electric taxi are bigger than conventional one. However, fuel, maintenance and repair costs are much lower. Using the expected energy consumption information evaluated in this study, the total spatio-temporal demand of electric energy required to recharge the electric fleet is also calculated, allowing identifying optimal location of charging infrastructure based on realistic routing patterns. This information could also be used by the distribution system operator to identify possible reinforcement actions in the electric grid in order to promote introducing electric vehicles

    Charging Recommender for Electric Taxis

    Get PDF
    Tato bakalářská práce se zabývá optimalizací strategie řidiče elektrického taxi ve smyslu plánování nabíjení, přibližování se klientům či čekání na klienty na potenciálně výhodných místech. Cílí především na doporučování místa a času nabíjení, ale také jednotlivých rozhodnutí řidiče se snahou maximalizovat jeho zisk. Nejprve jsem se zaměřil na obecný úvod do tématu elektrických vozidel, společně s průzkumem dostupných zdrojů zabývajících se vytvářením strategií pro pohyb nejen elektrických, ale i standardních (se spalovacími motory) taxi. Následně jsem navrhl dvě reprezentace prostředí (mřížková, K-means shlukování) a celý problém definoval pomocí frameworku MDP. Rovněž jsem představil algoritmus založený na dynamickém programování, který generuje navrhovanou sekvenci kroků, jichž by se měl řidič taxi držet. Důležitou částí řešení je rovněž odhad potřebných parametrů kupříkladu pravděpodobnosti vyzvednutí a vysazení zákazníka na konkrétních místech. Toto jsem provedl z rozsáhlého data setu historických cest taxíků. Závěrem jsem navržený algoritmus naimplementoval a experimentálně ukázal jeho výsledky v různých prostředích v porovnání se základním modelem chování řidiče elektrického taxi. Provedené experimenty ukázaly, že má metoda překonává zvolený základní model, jak v aspektu celkového přijmu řidiče, ve vzdálenosti nutné urazit k místu vyzvednutí pasažéra, ale také v efektivitě výběru nabíjecí stanice.This thesis deals with the problem of optimization of an electric taxi driver's strategy in terms of charging, passenger approaching or waiting in potentially favorable locations. It focuses primarily on recommending charging actions and taxi driver's decisions concerning the maximization of the driver's potential profit. Firstly I focused on a general introduction to the topic of electric vehicles together with a research of state of the art in the taxi movement strategy recommending field. I then proposed two concrete environment representations (Grid World, K-Means clustering) and defined the recommending problem as a Markov Decision Problem (MDP). I also presented an algorithm based on dynamic programming generating a policy for an electric taxi driver. An essential part of the presented solution method is an estimation of parameters such as pick-up and destination probability of passenger trips connected with particular locations on a planning map. It was done based on sizeable historical taxi trip data sets. Subsequently, I implemented the proposed algorithm based on a simple principle of dynamic programming. Finally, I experimentally showed the performance of my solution working in different environments compared with a base model of an electric taxi driver behavior. Experiments showed that my algorithm outperforms the base model in several fields, such as a total taxi driver's profit, distance to the next passenger, or charging station choice efficiency

    Data-driven analyses of future electric personal mobility

    Get PDF
    Personal mobility is moving towards the era of electrification. Adopting electric vehicles (EV) is widely regarded as an effective solution to energy crisis and air pollution. Many automakers have announced their roadmap to electrification in the next 1-2 decades. At the same time, limited electric range and insufficient charging infrastructure are still obstacles to EV large-scale adoption. However, with the emerging technologies of ride-hailing, connected vehicles, and autonomous vehicles, these obstacles are being solved effectively, and the EV market penetration is expected to increase significantly. Among the many kinds of electric mobility, electric taxis and personal battery electric vehicles (BEV) especially are gaining increasing popularity and acceptance among customers. This dissertation studies the future challenges of electric taxis and personal BEVs. First, this dissertation examines the BEV feasibility from the spatial-temporal travel patterns of taxis. The BEV feasibility of a taxi is quantified as the percentage of occupied trips that can be completed by BEVs during a year. It is found that taxis with certain characteristics are more suitable for switching to BEVs, such as fewer daily shifts, shorter daily driving distance, and higher likelihood to dwell at the borough of Manhattan. Second, we model and simulate the operations of electric autonomous vehicle (EAV) taxis. EAV taxis are dispatched by the optimization-based model and the neural network-based model. The neural network dispatch model is able to learn the optimal dispatch strategies and runs much faster. The EAV taxis dispatched by the neural network-based model can improve operational efficiency in term of less empty travel distance and smaller fleet size. Third, this dissertation proposes a cumulative prospect theory (CPT) based modeling framework to describe charging behavior of BEV drivers. A BEV mass-market scenario is constructed using 2017 National Household Travel Survey data. By applying the CPT-based charging behavior model, we examine the battery state-of-charge when drivers decide to charge their vehicles, charging timing and locations, and charging power demand profiles under the mass-market scenario. In addition, sensitivity analyses with respect to drivers’ risk attitude and public charger network coverage are conducted

    Energy management for electric vehicles in smart cities: a deep learning approach

    Get PDF
    International audienceWe propose a solution for Electric Vehicle (EV) energy management in smart cities, where a deep learning approach is used to enhance the energy consumption of electric vehicles by trajectory and delay predictions. Two Recurrent Neural Networks are adapted and trained on 60 days of urban traffic. The trained networks show precise prediction of trajec-tory and delay, even for long prediction intervals. An algorithm is designed and applied on well known energy models for traction and air conditioning. We show how it can prevent from a battery exhaustion. Experimental results combining both RNN and energy models demonstrate the efficiency of the proposed solution in terms of route trajectory and delay prediction, enhancing the energy managemen

    Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies

    Full text link
    [EN] The market for electric vehicles (EVs) has grown with each year, and EVs are considered to be a proper solution for the mitigation of urban pollution. So far, not much attention has been devoted to the use of EVs for public transportation, such as taxis and buses. However, a massive introduction of electric taxis (ETs) and electric buses (EBs) could generate issues in the grid. The challenges are different from those of private EVs, as their required load is much higher and the related time constraints must be considered with much more attention. These issues have begun to be studied within the last few years. This paper presents a review of the different approaches that have been proposed by various authors, to mitigate the impact of EBs and ETs on the future smart grid. Furthermore, some projects with regard to the integration of ETs and EBs around the world are presented. Some guidelines for future works are also proposed.This research was funded by the project SIS.JCG.19.03 of Universidad de las Americas, Ecuador.Clairand-Gómez, J.; Guerra-Terán, P.; Serrano-Guerrero, JX.; González-Rodríguez, M.; Escrivá-Escrivá, G. (2019). Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies. Energies. 12(16):1-22. https://doi.org/10.3390/en12163114S1221216Emadi, A. (2011). Transportation 2.0. IEEE Power and Energy Magazine, 9(4), 18-29. doi:10.1109/mpe.2011.941320Fahimi, B., Kwasinski, A., Davoudi, A., Balog, R., & Kiani, M. (2011). Charge It! IEEE Power and Energy Magazine, 9(4), 54-64. doi:10.1109/mpe.2011.941321Yilmaz, M., & Krein, P. T. (2013). Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles. IEEE Transactions on Power Electronics, 28(5), 2151-2169. doi:10.1109/tpel.2012.2212917Tagliaferri, C., Evangelisti, S., Acconcia, F., Domenech, T., Ekins, P., Barletta, D., & Lettieri, P. (2016). Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chemical Engineering Research and Design, 112, 298-309. doi:10.1016/j.cherd.2016.07.003Zackrisson, M., Fransson, K., Hildenbrand, J., Lampic, G., & O’Dwyer, C. (2016). Life cycle assessment of lithium-air battery cells. Journal of Cleaner Production, 135, 299-311. doi:10.1016/j.jclepro.2016.06.104Wu, Y., Yang, Z., Lin, B., Liu, H., Wang, R., Zhou, B., & Hao, J. (2012). Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy, 48, 537-550. doi:10.1016/j.enpol.2012.05.060Shen, W., Han, W., Chock, D., Chai, Q., & Zhang, A. (2012). Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China. Energy Policy, 49, 296-307. doi:10.1016/j.enpol.2012.06.038Wang, R., Wu, Y., Ke, W., Zhang, S., Zhou, B., & Hao, J. (2015). Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection? Applied Energy, 147, 92-103. doi:10.1016/j.apenergy.2015.01.107Clement-Nyns, K., Haesen, E., & Driesen, J. (2010). The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Transactions on Power Systems, 25(1), 371-380. doi:10.1109/tpwrs.2009.2036481Shafiee, S., Fotuhi-Firuzabad, M., & Rastegar, M. (2013). Investigating the Impacts of Plug-in Hybrid Electric Vehicles on Power Distribution Systems. IEEE Transactions on Smart Grid, 4(3), 1351-1360. doi:10.1109/tsg.2013.2251483Pieltain Fernandez, L., Gomez San Roman, T., Cossent, R., Mateo Domingo, C., & Frias, P. (2011). Assessment of the Impact of Plug-in Electric Vehicles on Distribution Networks. IEEE Transactions on Power Systems, 26(1), 206-213. doi:10.1109/tpwrs.2010.2049133Lucas, A., Bonavitacola, F., Kotsakis, E., & Fulli, G. (2015). Grid harmonic impact of multiple electric vehicle fast charging. Electric Power Systems Research, 127, 13-21. doi:10.1016/j.epsr.2015.05.012Turker, H., Bacha, S., Chatroux, D., & Hably, A. (2012). Low-Voltage Transformer Loss-of-Life Assessments for a High Penetration of Plug-In Hybrid Electric Vehicles (PHEVs). IEEE Transactions on Power Delivery, 27(3), 1323-1331. doi:10.1109/tpwrd.2012.2193423Kempton, W., & Tomić, J. (2005). Vehicle-to-grid power fundamentals: Calculating capacity and net revenue. Journal of Power Sources, 144(1), 268-279. doi:10.1016/j.jpowsour.2004.12.025Guille, C., & Gross, G. (2009). A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy, 37(11), 4379-4390. doi:10.1016/j.enpol.2009.05.053Geng, Z., Conejo, A. J., Chen, Q., Xia, Q., & Kang, C. (2017). Electricity production scheduling under uncertainty: Max social welfare vs. min emission vs. max renewable production. Applied Energy, 193, 540-549. doi:10.1016/j.apenergy.2017.02.051Verbruggen, A., Fischedick, M., Moomaw, W., Weir, T., Nadaï, A., Nilsson, L. J., … Sathaye, J. (2010). Renewable energy costs, potentials, barriers: Conceptual issues. Energy Policy, 38(2), 850-861. doi:10.1016/j.enpol.2009.10.036Oda, T., Aziz, M., Mitani, T., Watanabe, Y., & Kashiwagi, T. (2018). Mitigation of congestion related to quick charging of electric vehicles based on waiting time and cost–benefit analyses: A japanese case study. Sustainable Cities and Society, 36, 99-106. doi:10.1016/j.scs.2017.10.024Arkin, E. M., Carmi, P., Katz, M. J., Mitchell, J. S. B., & Segal, M. (2019). Locating battery charging stations to facilitate almost shortest paths. Discrete Applied Mathematics, 254, 10-16. doi:10.1016/j.dam.2018.07.019Gallardo-Lozano, J., Milanés-Montero, M. I., Guerrero-Martínez, M. A., & Romero-Cadaval, E. (2012). Electric vehicle battery charger for smart grids. Electric Power Systems Research, 90, 18-29. doi:10.1016/j.epsr.2012.03.015Aziz, M., Oda, T., & Ito, M. (2016). Battery-assisted charging system for simultaneous charging of electric vehicles. Energy, 100, 82-90. doi:10.1016/j.energy.2016.01.069Mehboob, N., Restrepo, M., Canizares, C. A., Rosenberg, C., & Kazerani, M. (2019). Smart Operation of Electric Vehicles With Four-Quadrant Chargers Considering Uncertainties. IEEE Transactions on Smart Grid, 10(3), 2999-3009. doi:10.1109/tsg.2018.2816404García-Villalobos, J., Zamora, I., San Martín, J. I., Asensio, F. J., & Aperribay, V. (2014). Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches. Renewable and Sustainable Energy Reviews, 38, 717-731. doi:10.1016/j.rser.2014.07.040Richardson, D. B. (2013). Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration. Renewable and Sustainable Energy Reviews, 19, 247-254. doi:10.1016/j.rser.2012.11.042Haidar, A. M. A., Muttaqi, K. M., & Sutanto, D. (2014). Technical challenges for electric power industries due to grid-integrated electric vehicles in low voltage distributions: A review. Energy Conversion and Management, 86, 689-700. doi:10.1016/j.enconman.2014.06.025Mwasilu, F., Justo, J. J., Kim, E.-K., Do, T. D., & Jung, J.-W. (2014). Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renewable and Sustainable Energy Reviews, 34, 501-516. doi:10.1016/j.rser.2014.03.031Habib, S., Kamran, M., & Rashid, U. (2015). Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks – A review. Journal of Power Sources, 277, 205-214. doi:10.1016/j.jpowsour.2014.12.020Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renewable and Sustainable Energy Reviews, 53, 720-732. doi:10.1016/j.rser.2015.09.012Raslavičius, L., Azzopardi, B., Keršys, A., Starevičius, M., Bazaras, Ž., & Makaras, R. (2015). Electric vehicles challenges and opportunities: Lithuanian review. Renewable and Sustainable Energy Reviews, 42, 786-800. doi:10.1016/j.rser.2014.10.076Rahman, I., Vasant, P. M., Singh, B. S. M., Abdullah-Al-Wadud, M., & Adnan, N. (2016). Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renewable and Sustainable Energy Reviews, 58, 1039-1047. doi:10.1016/j.rser.2015.12.353Faddel, S., Al-Awami, A., & Mohammed, O. (2018). Charge Control and Operation of Electric Vehicles in Power Grids: A Review. Energies, 11(4), 701. doi:10.3390/en11040701Ercan, T., Onat, N. C., & Tatari, O. (2016). Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach. Journal of Cleaner Production, 133, 1260-1276. doi:10.1016/j.jclepro.2016.06.051Kwan, S. C., & Hashim, J. H. (2016). A review on co-benefits of mass public transportation in climate change mitigation. Sustainable Cities and Society, 22, 11-18. doi:10.1016/j.scs.2016.01.004Kolbe, K. (2019). Mitigating urban heat island effect and carbon dioxide emissions through different mobility concepts: Comparison of conventional vehicles with electric vehicles, hydrogen vehicles and public transportation. Transport Policy, 80, 1-11. doi:10.1016/j.tranpol.2019.05.007Zalakeviciute, R., Rybarczyk, Y., López-Villada, J., & Diaz Suarez, M. V. (2018). Quantifying decade-long effects of fuel and traffic regulations on urban ambient PM 2.5 pollution in a mid-size South American city. Atmospheric Pollution Research, 9(1), 66-75. doi:10.1016/j.apr.2017.07.001Dell’ Olio, L., Ibeas, A., & Cecin, P. (2011). The quality of service desired by public transport users. Transport Policy, 18(1), 217-227. doi:10.1016/j.tranpol.2010.08.005Mahmoud, M., Garnett, R., Ferguson, M., & Kanaroglou, P. (2016). Electric buses: A review of alternative powertrains. Renewable and Sustainable Energy Reviews, 62, 673-684. doi:10.1016/j.rser.2016.05.019Nissan Leafhttps://www.nissan.co.uk/vehicles/new-vehicles/leaf/range-charging.htmlIntroducing the Fully Charged 2020 Kia Soul EVhttps://www.kia.com/us/en/content/vehicles/upcoming-vehicles/2020-soul-eve6https://en.byd.com/wp-content/uploads/2017/06/e6_cutsheet.pdfTesla Model Shttps://www.tesla.com/modelsBushttps://en.byd.com/bus/40-electric-motor-coach/Urbino Electrichttps://www.solarisbus.com/en/vehicles/zero-emissions/urbino-electricVolvo 7900 Electrichttps://www.volvobuses.co.uk/en-gb/our-offering/buses/volvo-7900-electric/specifications.htmlCollin, R., Miao, Y., Yokochi, A., Enjeti, P., & von Jouanne, A. (2019). Advanced Electric Vehicle Fast-Charging Technologies. Energies, 12(10), 1839. doi:10.3390/en12101839Yang, Y., El Baghdadi, M., Lan, Y., Benomar, Y., Van Mierlo, J., & Hegazy, O. (2018). Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles. Energies, 11(7), 1716. doi:10.3390/en11071716Bi, Z., Song, L., De Kleine, R., Mi, C. C., & Keoleian, G. A. (2015). Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system. Applied Energy, 146, 11-19. doi:10.1016/j.apenergy.2015.02.031Siqi Li, & Mi, C. C. (2015). Wireless Power Transfer for Electric Vehicle Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 4-17. doi:10.1109/jestpe.2014.2319453Musavi, F., & Eberle, W. (2014). Overview of wireless power transfer technologies for electric vehicle battery charging. IET Power Electronics, 7(1), 60-66. doi:10.1049/iet-pel.2013.0047Wang, Z., Wei, X., & Dai, H. (2015). Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles. Energies, 9(1), 10. doi:10.3390/en9010010Sarker, M. R., Pandzic, H., & Ortega-Vazquez, M. A. (2015). Optimal Operation and Services Scheduling for an Electric Vehicle Battery Swapping Station. IEEE Transactions on Power Systems, 30(2), 901-910. doi:10.1109/tpwrs.2014.2331560Adegbohun, F., von Jouanne, A., & Lee, K. (2019). Autonomous Battery Swapping System and Methodologies of Electric Vehicles. Energies, 12(4), 667. doi:10.3390/en12040667OPPChargeCommon Interface for Automated Charging of Hybrid Electric and Electric Commercial Vehicleshttps://www.oppcharge.org/dok/OPPCharge Specification 2nd edition 20190421.pdfFast Charging of Electric Vehicleshttps://www.oppcharge.orgJiang, C. X., Jing, Z. X., Cui, X. R., Ji, T. Y., & Wu, Q. H. (2018). Multiple agents and reinforcement learning for modelling charging loads of electric taxis. Applied Energy, 222, 158-168. doi:10.1016/j.apenergy.2018.03.164Fraile-Ardanuy, J., Castano-Solis, S., Álvaro-Hermana, R., Merino, J., & Castillo, Á. (2018). Using mobility information to perform a feasibility study and the evaluation of spatio-temporal energy demanded by an electric taxi fleet. Energy Conversion and Management, 157, 59-70. doi:10.1016/j.enconman.2017.11.070Rao, R., Cai, H., & Xu, M. (2018). Modeling electric taxis’ charging behavior using real-world data. International Journal of Sustainable Transportation, 12(6), 452-460. doi:10.1080/15568318.2017.1388887Litzlbauer, M. (2015). Technische Machbarkeitsanalyse einer rein elektrisch betriebenen Taxiflotte. e & i Elektrotechnik und Informationstechnik, 132(3), 172-177. doi:10.1007/s00502-015-0296-3Liao, B., Li, L., Li, B., Mao, J., Yang, J., Wen, F., & Salam, M. A. (2016). Load modeling for electric taxi battery charging and swapping stations: Comparison studies. 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). doi:10.1109/spec.2016.7846135Zou, Y., Wei, S., Sun, F., Hu, X., & Shiao, Y. (2016). Large-scale deployment of electric taxis in Beijing: A real-world analysis. Energy, 100, 25-39. doi:10.1016/j.energy.2016.01.062Asamer, J., Reinthaler, M., Ruthmair, M., Straub, M., & Puchinger, J. (2016). Optimizing charging station locations for urban taxi providers. Transportation Research Part A: Policy and Practice, 85, 233-246. doi:10.1016/j.tra.2016.01.014Yang, J., Dong, J., & Hu, L. (2017). A data-driven optimization-based approach for siting and sizing of electric taxi charging stations. Transportation Research Part C: Emerging Technologies, 77, 462-477. doi:10.1016/j.trc.2017.02.014Jiang, C., Jing, Z., Ji, T., & Wu, Q. (2018). Optimal location of PEVCSs using MAS and ER approach. IET Generation, Transmission & Distribution, 12(20), 4377-4387. doi:10.1049/iet-gtd.2017.1907Pan, A., Zhao, T., Yu, H., & Zhang, Y. (2019). Deploying Public Charging Stations for Electric Taxis: A Charging Demand Simulation Embedded Approach. IEEE Access, 7, 17412-17424. doi:10.1109/access.2019.2894780Chen Lianfu, Zhang, W., Huang, Y., & Zhang, D. (2014). Research on the charging station service radius of electric taxis. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). doi:10.1109/itec-ap.2014.6941081Yang, Y., Zhang, W., Niu, L., & Jiang, J. (2015). Coordinated Charging Strategy for Electric Taxis in Temporal and Spatial Scale. Energies, 8(2), 1256-1272. doi:10.3390/en8021256Niu, L., & Zhang, D. (2015). Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization. The Scientific World Journal, 2015, 1-9. doi:10.1155/2015/354952Yang, Z., Guo, T., You, P., Hou, Y., & Qin, S. J. (2019). Distributed Approach for Temporal–Spatial Charging Coordination of Plug-in Electric Taxi Fleet. IEEE Transactions on Industrial Informatics, 15(6), 3185-3195. doi:10.1109/tii.2018.2879515Rossi, F., Iglesias, R., Alizadeh, M., & Pavone, M. (2020). On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms. IEEE Transactions on Control of Network Systems, 7(1), 384-397. doi:10.1109/tcns.2019.2923384Liang, Y., Zhang, X., Xie, J., & Liu, W. (2017). An Optimal Operation Model and Ordered Charging/Discharging Strategy for Battery Swapping Stations. Sustainability, 9(5), 700. doi:10.3390/su9050700XU, X., YAO, L., ZENG, P., LIU, Y., & CAI, T. (2015). Architecture and performance analysis of a smart battery charging and swapping operation service network for electric vehicles in China. Journal of Modern Power Systems and Clean Energy, 3(2), 259-268. doi:10.1007/s40565-015-0118-yJing, Z., Fang, L., Lin, S., & Shao, W. (2014). Modeling for electric taxi load and optimization model for charging/swapping facilities of electric taxi. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). doi:10.1109/itec-ap.2014.6941160Wang, Y., Ding, W., Huang, L., Wei, Z., Liu, H., & Stankovic, J. A. (2018). Toward Urban Electric Taxi Systems in Smart Cities: The Battery Swapping Challenge. IEEE Transactions on Vehicular Technology, 67(3), 1946-1960. doi:10.1109/tvt.2017.2774447You, P., Yang, Z., Zhang, Y., Low, S. H., & Sun, Y. (2016). Optimal Charging Schedule for a Battery Switching Station Serving Electric Buses. IEEE Transactions on Power Systems, 31(5), 3473-3483. doi:10.1109/tpwrs.2015.2487273Yang, Z., Sun, L., Chen, J., Yang, Q., Chen, X., & Xing, K. (2014). Profit Maximization for Plug-In Electric Taxi With Uncertain Future Electricity Prices. IEEE Transactions on Power Systems, 29(6), 3058-3068. doi:10.1109/tpwrs.2014.2311120Yang, Z., Sun, L., Ke, M., Shi, Z., & Chen, J. (2014). Optimal Charging Strategy for Plug-In Electric Taxi With Time-Varying Profits. IEEE Transactions on Smart Grid, 5(6), 2787-2797. doi:10.1109/tsg.2014.2354473Yang, J., Xu, Y., & Yang, Z. (2017). Regulating the Collective Charging Load of Electric Taxi Fleet via Real-Time Pricing. IEEE Transactions on Power Systems, 32(5), 3694-3703. doi:10.1109/tpwrs.2016.2643685Du, R., Liao, G., Zhang, E., & Wang, J. (2018). Battery charge or change, which is better? A case from Beijing, China. Journal of Cleaner Production, 192, 698-711. doi:10.1016/j.jclepro.2018.05.021Yang, J., Dong, J., Lin, Z., & Hu, L. (2016). Predicting market potential and environmental benefits of deploying electric taxis in Nanjing, China. Transportation Research Part D: Transport and Environment, 49, 68-81. doi:10.1016/j.trd.2016.08.037You, P., Low, S. H., Yang, Z., Zhang, Y., & Lingkun Fu. (2016). Real-time recommendation algorithm of battery swapping stations for electric taxis. 2016 IEEE Power and Energy Society General Meeting (PESGM). doi:10.1109/pesgm.2016.7741620Dai, Q., Cai, T., Duan, S., & Zhao, F. (2014). Stochastic Modeling and Forecasting of Load Demand for Electric Bus Battery-Swap Station. IEEE Transactions on Power Delivery, 29(4), 1909-1917. doi:10.1109/tpwrd.2014.2308990Mohamed, M., Farag, H., El-Taweel, N., & Ferguson, M. (2017). Simulation of electric buses on a full transit network: Operational feasibility and grid impact analysis. Electric Power Systems Research, 142, 163-175. doi:10.1016/j.epsr.2016.09.032Zhang, X. (2018). Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm. Energies, 11(6), 1449. doi:10.3390/en11061449Ding, H., Hu, Z., & Song, Y. (2015). Value of the energy storage system in an electric bus fast charging station. Applied Energy, 157, 630-639. doi:10.1016/j.apenergy.2015.01.058Qin, N., Gusrialdi, A., Paul Brooker, R., & T-Raissi, A. (2016). Numerical analysis of electric bus fast charging strategies for demand charge reduction. Transportation Research Part A: Policy and Practice, 94, 386-396. doi:10.1016/j.tra.2016.09.014Huimiao Chen, Zechun Hu, Zhiwei Xu, Jiayi Li, Honggang Zhang, Xue Xia, … Mingwei Peng. (2016). Coordinated charging strategies for electric bus fast charging stations. 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). doi:10.1109/appeec.2016.7779677Chen, H., Hu, Z., Zhang, H., & Luo, H. (2018). Coordinated charging and discharging strategies for plug-in electric bus fast charging station with energy storage system. IET Generation, Transmission & Distribution, 12(9), 2019-2028. doi:10.1049/iet-gtd.2017.0636Gao, Y., Guo, S., Ren, J., Zhao, Z., Ehsan, A., & Zheng, Y. (2018). An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors. Energies, 11(8), 2060. doi:10.3390/en11082060Cheng, Y., & Tao, J. (2018). Optimization of A Micro Energy Network Integrated with Electric Bus Battery Swapping Station and Distributed PV. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). doi:10.1109/ei2.2018.8582236Sebastiani, M. T., Luders, R., & Fonseca, K. V. O. (2016). Evaluating Electric Bus Operation for a Real-World BRT Public Transportation Using Simulation Optimization. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2777-2786. doi:10.1109/tits.2016.2525800Wang, Y., Huang, Y., Xu, J., & Barclay, N. (2017). Optimal recharging scheduling for urban electric buses: A case study in Davis. Transportation Research Part E: Logistics and Transportation Review, 100, 115-132. doi:10.1016/j.tre.2017.01.001Liu, Z., Song, Z., & He, Y. (2018). Planning of Fast-Charging Stations for a Battery Electric Bus System under Energy Consumption Uncertainty. Transportation Research Record: Journal of the Transportation Research Board, 2672(8), 96-107. doi:10.1177/0361198118772953Leou, R.-C., & Hung, J.-J. (2017). Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations. Energies, 10(4), 483. doi:10.3390/en10040483Bak, D.-B., Bak, J.-S., & Kim, S.-Y. (2018). Strategies for Implementing Public Service Electric Bus Lines by Charging Type in Daegu Metropolitan City, South Korea. Sustainability, 10(10), 3386. doi:10.3390/su10103386Chen, Z., Yin, Y., & Song, Z. (2018). A cost-competitiveness analysis of charging infrastructure for electric bus operations. Transportation Research Part C: Emerging Technologies, 93, 351-366. doi:10.1016/j.trc.2018.06.006Cheng, Y., Wang, W., Ding, Z., & He, Z. (2019). Electric bus fast charging station resource planning consid
    corecore