102,342 research outputs found

    Bid Optimization by Multivariable Control in Display Advertising

    Full text link
    Real-Time Bidding (RTB) is an important paradigm in display advertising, where advertisers utilize extended information and algorithms served by Demand Side Platforms (DSPs) to improve advertising performance. A common problem for DSPs is to help advertisers gain as much value as possible with budget constraints. However, advertisers would routinely add certain key performance indicator (KPI) constraints that the advertising campaign must meet due to practical reasons. In this paper, we study the common case where advertisers aim to maximize the quantity of conversions, and set cost-per-click (CPC) as a KPI constraint. We convert such a problem into a linear programming problem and leverage the primal-dual method to derive the optimal bidding strategy. To address the applicability issue, we propose a feedback control-based solution and devise the multivariable control system. The empirical study based on real-word data from Taobao.com verifies the effectiveness and superiority of our approach compared with the state of the art in the industry practices

    Optimal Real-Time Bidding for Display Advertising

    Get PDF
    Real-Time Bidding (RTB) is revolutionising display advertising by facilitating a real-time auction for each ad impression. As they are able to use impression-level data, such as user cookies and context information, advertisers can adaptively bid for each ad impression. Therefore, it is important that an advertiser designs an effective bidding strategy which can be abstracted as a function - mapping from the information of a specific ad impression to the bid price. Exactly how this bidding function should be designed is a non-trivial problem. It is a problem which involves multiple factors, such as the campaign-specific key performance indicator (KPI), the campaign lifetime auction volume and the budget. This thesis is focused on the design of automatic solutions to this problem of creating optimised bidding strategies for RTB auctions: strategies which are optimal, that is, from the perspective of an advertiser agent - to maximise the campaign's KPI in relation to the constraints of the auction volume and the budget. The problem is mathematically formulated as a functional optimisation framework where the optimal bidding function can be derived without any functional form restriction. Beyond single-campaign bid optimisation, the proposed framework can be extended to multi-campaign cases, where a portfolio-optimisation solution of auction volume reallocation is performed to maximise the overall profit with a controlled risk. On the model learning side, an unbiased learning scheme is proposed to address the data bias problem resulting from the ad auction selection, where we derive a "bid-aware'' gradient descent algorithm to train unbiased models. Moreover, the robustness of achieving the expected KPIs in a dynamic RTB market is solved with a feedback control mechanism for bid adjustment. To support the theoretic derivations, extensive experiments are carried out based on large-scale real-world data. The proposed solutions have been deployed in three commercial RTB systems in China and the United States. The online A/B tests have demonstrated substantial improvement of the proposed solutions over strong baselines

    Rational bidding using reinforcement learning: an application in automated resource allocation

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational resources is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic resource provisioning and usage of computational resources, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a framework for supporting consumers and providers in technical and economic preference elicitation and the generation of bids. Secondly, we introduce a consumer-side reinforcement learning bidding strategy which enables rational behavior by the generation and selection of bids. Thirdly, we evaluate and compare this bidding strategy against a truth-telling bidding strategy for two kinds of market mechanisms – one centralized and one decentralized

    Q-Strategy: A Bidding Strategy for Market-Based Allocation of Grid Services

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational services is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic service provisioning and usage of Grid services, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a bidding agent framework for implementing artificial bidding agents, supporting consumers and providers in technical and economic preference elicitation as well as automated bid generation by the requesting and provisioning of Grid services. Secondly, we introduce a novel consumer-side bidding strategy, which enables a goal-oriented and strategic behavior by the generation and submission of consumer service requests and selection of provider offers. Thirdly, we evaluate and compare the Q-strategy, implemented within the presented framework, against the Truth-Telling bidding strategy in three mechanisms – a centralized CDA, a decentralized on-line machine scheduling and a FIFO-scheduling mechanisms

    Managing Risk of Bidding in Display Advertising

    Full text link
    In this paper, we deal with the uncertainty of bidding for display advertising. Similar to the financial market trading, real-time bidding (RTB) based display advertising employs an auction mechanism to automate the impression level media buying; and running a campaign is no different than an investment of acquiring new customers in return for obtaining additional converted sales. Thus, how to optimally bid on an ad impression to drive the profit and return-on-investment becomes essential. However, the large randomness of the user behaviors and the cost uncertainty caused by the auction competition may result in a significant risk from the campaign performance estimation. In this paper, we explicitly model the uncertainty of user click-through rate estimation and auction competition to capture the risk. We borrow an idea from finance and derive the value at risk for each ad display opportunity. Our formulation results in two risk-aware bidding strategies that penalize risky ad impressions and focus more on the ones with higher expected return and lower risk. The empirical study on real-world data demonstrates the effectiveness of our proposed risk-aware bidding strategies: yielding profit gains of 15.4% in offline experiments and up to 17.5% in an online A/B test on a commercial RTB platform over the widely applied bidding strategies

    A multi-agent platform for auction-based allocation of loads in transportation logistics

    No full text
    This paper describes an agent-based platform for the allocation of loads in distributed transportation logistics, developed as a collaboration between CWI, Dutch National Center for Mathematics and Computer Science, Amsterdam and Vos Logistics Organizing, Nijmegen, The Netherlands. The platform follows a real business scenario proposed by Vos, and it involves a set of agents bidding for transportation loads to be distributed from a central depot in the Netherlands to different locations across Germany. The platform supports both human agents (i.e. transportation planners), who can bid through specialized planning and bidding interfaces, as well as automated, software agents. We exemplify how the proposed platform can be used to test both the bidding behaviour of human logistics planners, as well as the performance of automated auction bidding strategies, developed for such settings. The paper first introduces the business problem setting and then describes the architecture and main characteristics of our auction platform. We conclude with a preliminary discussion of our experience from a human bidding experiment, involving Vos planners competing for orders both against each other and against some (simple) automated strategies
    • 

    corecore