582 research outputs found

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    Detection algorithms for spatial data

    Get PDF
    This dissertation addresses the problem of anomaly detection in spatial data. The problem of landmine detection in airborne spatial data is chosen as the specific detection scenario. The first part of the dissertation deals with the development of a fast algorithm for kernel-based non-linear anomaly detection in the airborne spatial data. The original Kernel RX algorithm, proposed by Kwon et al. [2005a], suffers from the problem of high computational complexity, and has seen limited application. With the aim to reduce the computational complexity, a reformulated version of the Kernel RX, termed the Spatially Weighted Kernel RX (SW-KRX), is presented. It is shown that under this reformulation, the detector statistics can be obtained directly as a function of the centered kernel Gram matrix. Subsequently, a methodology for the fast computation of the centered kernel Gram matrix is proposed. The key idea behind the proposed methodology is to decompose the set of image pixels into clusters, and expediting the computations by approximating the effect of each cluster as a whole. The SW-KRX algorithm is implemented for a special case, and comparative results are compiled for the SW-KRX vis-à-vis the RX anomaly detector. In the second part of the dissertation, a detection methodology for buried mine detection is presented. The methodology is based on extraction of color texture information using cross-co-occurrence features. A feature selection methodology based on Bhattacharya coefficients and principal feature analysis is proposed and detection results with different feature-based detectors are presented, to demonstrate the effectiveness of the proposed methodology in the extraction of useful discriminatory information --Abstract, page iii

    Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

    Get PDF
    Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of three popular linear dimensionality reduction methods on the performance of three benchmark anomaly detection algorithms. The Principal Component Analysis (PCA), Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) as DR methods, act as pre-processing step for AD algorithms. The assessed AD algorithms are Reed-Xiaoli (RX), Kernel-based versions of the RX (Kernel-RX) and Dual Window-Based Eigen Separation Transform (DWEST). The AD methods have been applied to two hyperspectral datasets acquired by both the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperspectral Mapper (HyMap) sensors. The evaluation of experiments has been done using Receiver Operation Characteristic (ROC) curve, visual investigation and runtime of the algorithms. Experimental results show that the DR methods can significantly improve the detection performance of the RX method. The detection performance of neither the Kernel-RX method nor the DWEST method changes when using the proposed methods. Moreover, these DR methods increase the runtime of the RX and DWEST significantly and make them suitable to be implemented in real time applications

    Cloud-based cyber-physical intrusion detection for vehicles using Deep Learning

    Get PDF
    Detection of cyber attacks against vehicles is of growing interest. As vehicles typically afford limited processing resources, proposed solutions are rule-based or lightweight machine learning techniques. We argue that this limitation can be lifted with computational offloading commonly used for resource-constrained mobile devices. The increased processing resources available in this manner allow access to more advanced techniques. Using as case study a small four-wheel robotic land vehicle, we demonstrate the practicality and benefits of offloading the continuous task of intrusion detection that is based on deep learning. This approach achieves high accuracy much more consistently than with standard machine learning techniques and is not limited to a single type of attack or the in-vehicle CAN bus as previous work. As input, it uses data captured in real-time that relate to both cyber and physical processes, which it feeds as time series data to a neural network architecture. We use both a deep multilayer perceptron and a recurrent neural network architecture, with the latter benefitting from a long-short term memory hidden layer, which proves very useful for learning the temporal context of different attacks. We employ denial of service, command injection and malware as examples of cyber attacks that are meaningful for a robotic vehicle. The practicality of the latter depends on the resources afforded onboard and remotely, as well as the reliability of the communication means between them. Using detection latency as the criterion, we have developed a mathematical model to determine when computation offloading is beneficial given parameters related to the operation of the network and the processing demands of the deep learning model. The more reliable the network and the greater the processing demands, the greater the reduction in detection latency achieved through offloading

    Detection And Classification Of Buried Radioactive Materials

    Get PDF
    This dissertation develops new approaches for detection and classification of buried radioactive materials. Different spectral transformation methods are proposed to effectively suppress noise and to better distinguish signal features in the transformed space. The contributions of this dissertation are detailed as follows. 1) Propose an unsupervised method for buried radioactive material detection. In the experiments, the original Reed-Xiaoli (RX) algorithm performs similarly as the gross count (GC) method; however, the constrained energy minimization (CEM) method performs better if using feature vectors selected from the RX output. Thus, an unsupervised method is developed by combining the RX and CEM methods, which can efficiently suppress the background noise when applied to the dimensionality-reduced data from principle component analysis (PCA). 2) Propose an approach for buried target detection and classification, which applies spectral transformation followed by noisejusted PCA (NAPCA). To meet the requirement of practical survey mapping, we focus on the circumstance when sensor dwell time is very short. The results show that spectral transformation can alleviate the effects from spectral noisy variation and background clutters, while NAPCA, a better choice than PCA, can extract key features for the following detection and classification. 3) Propose a particle swarm optimization (PSO)-based system to automatically determine the optimal partition for spectral transformation. Two PSOs are incorporated in the system with the outer one being responsible for selecting the optimal number of bins and the inner one for optimal bin-widths. The experimental results demonstrate that using variable bin-widths is better than a fixed bin-width, and PSO can provide better results than the traditional Powell’s method. 4) Develop parallel implementation schemes for the PSO-based spectral partition algorithm. Both cluster and graphics processing units (GPU) implementation are designed. The computational burden of serial version has been greatly reduced. The experimental results also show that GPU algorithm has similar speedup as cluster-based algorithm
    • …
    corecore