256 research outputs found

    Autonomous navigation of a wheeled mobile robot in farm settings

    Get PDF
    This research is mainly about autonomously navigation of an agricultural wheeled mobile robot in an unstructured outdoor setting. This project has four distinct phases defined as: (i) Navigation and control of a wheeled mobile robot for a point-to-point motion. (ii) Navigation and control of a wheeled mobile robot in following a given path (path following problem). (iii) Navigation and control of a mobile robot, keeping a constant proximity distance with the given paths or plant rows (proximity-following). (iv) Navigation of the mobile robot in rut following in farm fields. A rut is a long deep track formed by the repeated passage of wheeled vehicles in soft terrains such as mud, sand, and snow. To develop reliable navigation approaches to fulfill each part of this project, three main steps are accomplished: literature review, modeling and computer simulation of wheeled mobile robots, and actual experimental tests in outdoor settings. First, point-to-point motion planning of a mobile robot is studied; a fuzzy-logic based (FLB) approach is proposed for real-time autonomous path planning of the robot in unstructured environment. Simulation and experimental evaluations shows that FLB approach is able to cope with different dynamic and unforeseen situations by tuning a safety margin. Comparison of FLB results with vector field histogram (VFH) and preference-based fuzzy (PBF) approaches, reveals that FLB approach produces shorter and smoother paths toward the goal in almost all of the test cases examined. Then, a novel human-inspired method (HIM) is introduced. HIM is inspired by human behavior in navigation from one point to a specified goal point. A human-like reasoning ability about the situations to reach a predefined goal point while avoiding any static, moving and unforeseen obstacles are given to the robot by HIM. Comparison of HIM results with FLB suggests that HIM is more efficient and effective than FLB. Afterward, navigation strategies are built up for path following, rut following, and proximity-following control of a wheeled mobile robot in outdoor (farm) settings and off-road terrains. The proposed system is composed of different modules which are: sensor data analysis, obstacle detection, obstacle avoidance, goal seeking, and path tracking. The capabilities of the proposed navigation strategies are evaluated in variety of field experiments; the results show that the proposed approach is able to detect and follow rows of bushes robustly. This action is used for spraying plant rows in farm field. Finally, obstacle detection and obstacle avoidance modules are developed in navigation system. These modules enables the robot to detect holes or ground depressions (negative obstacles), that are inherent parts of farm settings, and also over ground level obstacles (positive obstacles) in real-time at a safe distance from the robot. Experimental tests are carried out on two mobile robots (PowerBot and Grizzly) in outdoor and real farm fields. Grizzly utilizes a 3D-laser range-finder to detect objects and perceive the environment, and a RTK-DGPS unit for localization. PowerBot uses sonar sensors and a laser range-finder for obstacle detection. The experiments demonstrate the capability of the proposed technique in successfully detecting and avoiding different types of obstacles both positive and negative in variety of scenarios

    Perceiving guaranteed collision-free robot trajectories in unknown and unpredictable environments

    Get PDF
    The dissertation introduces novel approaches for solving a fundamental problem: detecting a collision-free robot trajectory based on sensing in real-world environments that are mostly unknown and unpredictable, i.e., obstacle geometries and their motions are unknown. Such a collision-free trajectory must provide a guarantee of safe robot motion by accounting for robot motion uncertainty and obstacle motion uncertainty. Further, as simultaneous planning and execution of robot motion is required to navigate in such environments, the collision-free trajectory must be detected in real-time. Two novel concepts: (a) dynamic envelopes and (b) atomic obstacles, are introduced to perceive if a robot at a configuration q, at a future time t, i.e., at a point ? = (q, t) in the robot's configuration-time space (CT space), will be collision-free or not, based on sensor data generated at each sensing moment t, in real-time. A dynamic envelope detects a collision-free region in the CT space in spite of unknown motions of obstacles. Atomic obstacles are used to represent perceived unknown obstacles in the environment at each sensing moment. The robot motion uncertainty is modeled by considering that a robot actually moves in a certain tunnel of a desired trajectory in its CT space. An approach based on dynamic envelopes is presented for detecting if a continuous tunnel of trajectories are guaranteed collision-free in an unpredictable environment, where obstacle motions are unknown. An efficient collision-checker is also developed that can perform fast real-time collision detection between a dynamic envelope and a large number of atomic obstacles in an unknown environment. The effectiveness of these methods is tested for different robots using both simulations and real-world experiments

    Cooperative impedance control with time-varying stiffness

    Get PDF
    The focus of much automation research has been to design controllers and robots that safely interact with the environment. One approach is to use impedance control to specify a relationship between a robot\u27s motion and force and control a grasped object\u27s apparent stiffness, damping, and inertia. Conventional impedance control practices have focused on position-based manipulators - which are inherently non-compliant - using constant, task-dependent impedances. In the event of large trajectory tracking errors, this implementation method generates large interaction forces that can damage the workcell. Additionally, these position-based devices require dedicated force/torque sensors to measure and apply forces. In this paper, we present an alternative impedance controller implemented on cooperating torque-based manipulators. Through the use of time-varying impedance parameters, this controller limits the interaction forces to ensure harmless manipulation. Successful completion of transport and insertion tasks demonstrated the effectiveness of the controller

    Trends in the control of hexapod robots: a survey

    Get PDF
    The static stability of hexapods motivates their design for tasks in which stable locomotion is required, such as navigation across complex environments. This task is of high interest due to the possibility of replacing human beings in exploration, surveillance and rescue missions. For this application, the control system must adapt the actuation of the limbs according to their surroundings to ensure that the hexapod does not tumble during locomotion. The most traditional approach considers their limbs as robotic manipulators and relies on mechanical models to actuate them. However, the increasing interest in model-free models for the control of these systems has led to the design of novel solutions. Through a systematic literature review, this paper intends to overview the trends in this field of research and determine in which stage the design of autonomous and adaptable controllers for hexapods is.The first author received funding through a doctoral scholarship from the Portuguese Foundation for Science and Technology (FCT) (Grant No. SFRH/BD/145818/2019), with funds from the Portuguese Ministry of Science, Technology and Higher Education and the European Social Fund through the Programa Operacional Regional Norte. This work has been supported by the FCT national funds, under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020

    REACTIVE MOTION REPLANNING FOR HUMAN-ROBOT COLLABORATION

    Get PDF
    Negli ultimi anni si è assistito a un incremento significativo di robot che condividono lo spazio di lavoro con operatori umani, per combinare la rapidità e la precisione proprie dei robot con l'adattabilità e l'intelligenza umana. Tuttavia, questa integrazione ha introdotto nuove sfide in termini di sicurezza ed efficienza della collaborazione. I robot devono essere in grado di adattarsi prontamente ai cambiamenti nell'ambiente circostante, come i movimenti degli operatori, adeguando in tempo reale il loro percorso per evitare collisioni, preferibilmente senza interruzioni. Inoltre, nelle operazioni di collaborazione tra uomo e robot, le traiettorie ripianificate devono rispettare i protocolli di sicurezza, al fine di evitare rallentamenti e fermate dovute alla prossimità eccessiva del robot all'operatore. In questo contesto è fondamentale fornire soluzioni di alta qualità in tempi rapidi per garantire la reattività del robot. Le tecniche di ripianificazione tradizionali tendono a faticare in ambienti complessi, soprattutto quando si tratta di robot con molti gradi di libertà e numerosi ostacoli di dimensioni considerevoli. La presente tesi affronta queste sfide proponendo un nuovo algoritmo sampling-based di ripianificazione del percorso per manipolatori robotici. Questo approccio sfrutta percorsi pre-calcolati per generare rapidamente nuove soluzioni in poche centinaia di millisecondi. Inoltre, incorpora una funzione di costo che guida l'algoritmo verso soluzioni che rispettano lo standard di sicurezza ISO/TS 15066, riducendo così gli interventi di sicurezza e promuovendo una cooperazione efficiente tra uomo e robot. Viene inoltre presentata un'architettura per gestire il processo di ripianificazione durante l'esecuzione del percorso del robot. Infine, viene introdotto uno strumento software che semplifica l'implementazione e il testing degli algoritmi di ripianificazione del percorso. Simulazioni ed esperimenti condotti su robot reali dimostrano le prestazioni superiori del metodo proposto rispetto ad altre tecniche popolari.In recent years, there has been a significant increase in robots sharing workspace with human operators, combining the speed and precision inherent to robots with human adaptability and intelligence. However, this integration has introduced new challenges in terms of safety and collaborative efficiency. Robots now need to swiftly adjust to dynamic changes in their environment, such as the movements of operators, altering their path in real-time to avoid collisions, ideally without any disruptions. Moreover, in human-robot collaborations, replanned trajectories should adhere to safety protocols, preventing safety-induced slowdowns or stops caused by the robot's proximity to the operator. In this context, quickly providing high-quality solutions is crucial for ensuring the robot's responsiveness. Conventional replanning techniques often fall short in complex environments, especially for robots with numerous degrees of freedom contending with sizable obstacles. This thesis tackles these challenges by introducing a novel sampling-based path replanning algorithm tailored for robotic manipulators. This approach exploits pre-computed paths to generate new solutions in a few hundred milliseconds. Additionally, it integrates a cost function that steers the algorithm towards solutions that strictly adhere to the ISO/TS 15066 safety standard, thereby minimizing the need for safety interventions and fostering efficient cooperation between humans and robots. Furthermore, an architecture for managing the replanning process during the execution of the robot's path is introduced. Finally, a software tool is presented to streamline the implementation and testing of path replanning algorithms. Simulations and experiments conducted on real robots demonstrate the superior performance of the proposed method compared to other popular techniques
    corecore