874,576 research outputs found

    Cloud Chaser: Real Time Deep Learning Computer Vision on Low Computing Power Devices

    Full text link
    Internet of Things(IoT) devices, mobile phones, and robotic systems are often denied the power of deep learning algorithms due to their limited computing power. However, to provide time-critical services such as emergency response, home assistance, surveillance, etc, these devices often need real-time analysis of their camera data. This paper strives to offer a viable approach to integrate high-performance deep learning-based computer vision algorithms with low-resource and low-power devices by leveraging the computing power of the cloud. By offloading the computation work to the cloud, no dedicated hardware is needed to enable deep neural networks on existing low computing power devices. A Raspberry Pi based robot, Cloud Chaser, is built to demonstrate the power of using cloud computing to perform real-time vision tasks. Furthermore, to reduce latency and improve real-time performance, compression algorithms are proposed and evaluated for streaming real-time video frames to the cloud.Comment: Accepted to The 11th International Conference on Machine Vision (ICMV 2018). Project site: https://zhengyiluo.github.io/projects/cloudchaser

    ParaFPGA 2013: Harnessing Programs, Power and Performance in Parallel FPGA applications

    Get PDF
    Future computing systems will require dedicated accelerators to achieve high-performance. The mini-symposium ParaFPGA explores parallel computing with FPGAs as an interesting avenue to reduce the gap between the architecture and the application. Topics discussed are the power of functional and dataflow languages, the performance of high-level synthesis tools, the automatic creation of hardware multi-cores using C-slow retiming, dynamic power management to control the energy consumption, real-time reconfiguration of streaming image processing filters and memory optimized event image segmentation

    Distributed Computing Concepts in D0

    Full text link
    The D0 experiment faces many challenges enabling access to large datasets for physicists on four continents. The new concepts for distributed large scale computing implemented in D0 aim for an optimal use of the available computing resources while minimising the person-power needed for operation. The real live test of these concepts is of special interest for the LHC Computing GRID, LCG, which follows a similar strategy.Comment: 3 pages, 3 figures, LaTeX, epj style (included), Proceedings of the International Europhysics Conference on High Energy Physics EPS 2003 (July 17-23, 2003), Aachen, German

    A Detailed Analysis of Contemporary ARM and x86 Architectures

    Get PDF
    RISC vs. CISC wars raged in the 1980s when chip area and processor design complexity were the primary constraints and desktops and servers exclusively dominated the computing landscape. Today, energy and power are the primary design constraints and the computing landscape is significantly different: growth in tablets and smartphones running ARM (a RISC ISA) is surpassing that of desktops and laptops running x86 (a CISC ISA). Further, the traditionally low-power ARM ISA is entering the high-performance server market, while the traditionally high-performance x86 ISA is entering the mobile low-power device market. Thus, the question of whether ISA plays an intrinsic role in performance or energy efficiency is becoming important, and we seek to answer this question through a detailed measurement based study on real hardware running real applications. We analyze measurements on the ARM Cortex-A8 and Cortex-A9 and Intel Atom and Sandybridge i7 microprocessors over workloads spanning mobile, desktop, and server computing. Our methodical investigation demonstrates the role of ISA in modern microprocessors? performance and energy efficiency. We find that ARM and x86 processors are simply engineering design points optimized for different levels of performance, and there is nothing fundamentally more energy efficient in one ISA class or the other. The ISA being RISC or CISC seems irrelevant
    • 

    corecore