3 research outputs found

    Sistema de geolocalizaci贸n y an谩lisis vehicular para motociclistas

    Get PDF
    Currently there are a number of applications functioning through internet connections aimed at assisting motorcyclists. However, most of these applications wither do not function or require the route maps to be downloaded prior to the trip. This paper proposes a vehicular analysis system where the motorcyclists have access to an application developed for Android devices, without relying on an internet connection. This will done either through data of the routes stored on the mobile device or through data hosted on a server through the implementation of a web service when there is a connection. Additional, variables are tracked and plotted, such as instant geographical position, percentage of necessary fuel, and speed, obtained through the design and implementation of an electronic circuit that acquires the signals of the motorcycle sensors and submit such information via Bluetooth to the mobile device. From the tests carried out it is observed that the system works efficiently with an absolute error up to 2 meters from the destination point. However, the routes from actual location of the motorcyclist to the intermediate position, the precision is even better with an error possibility of only centimeters. In general, for some distance, the system presents a standard deviation of 15,19 meters. The storage of the data and the user orientation are in real time, and the system can be implemented on any kind of vehicle.Actualmente existen aplicaciones dedicadas a la orientaci贸n de motociclistas que funcionan soportadas en una conexi贸n a internet, pero cuando se carece de ella la mayor铆a no funcionan y otras permiten el funcionamiento solo si anteriormente se descargaron los mapas de los trayectos a realizar. Por lo anterior, este art铆culo propone un sistema de an谩lisis vehicular en donde los motociclistas tienen acceso a una aplicaci贸n desarrollada para dispositivos con sistema operativo Android que les mostrar谩 una metodolog铆a de orientaci贸n sin depender exclusivamente de una conexi贸n a internet; esta orientaci贸n 鈥揺n cambio- se realiza con base en los datos de recorridos almacenados en el dispositivo m贸vil, o en los datos alojados en un servidor mediante la implementaci贸n de un servicio web cuando hay conexi贸n. Adicionalmente, se realiza seguimiento y graficaci贸n de las variables: posici贸n geogr谩fica instant谩nea, porcentaje de nivel de gasolina, y velocidad, obtenidas mediante el dise帽o e implementaci贸n de un circuito electr贸nico encargado de capturar las se帽ales de los sensores de la motocicleta y enviar dicha informaci贸n v铆a Bluetooth al dispositivo m贸vil. De las pruebas realizadas se observa que el sistema funciona eficientemente con un error absoluto menor a 2 metros hasta el punto de destino; sin embargo, para el recorrido desde el punto actual del usuario hasta uno intermedio la precisi贸n es del orden de cent铆metros

    The performance of hybrid GPS and GLONASS

    Get PDF
    In recent years, the market served by satellite positioning systems has expanded exponentially. It is stimulated by the needs of an ever increasing number and variety of scientific, business and leisure applications. The dominant system is the USA's GPS, or Global Positioning System. However, GPS is not a panacea for all positioning tasks, in any environmental situation. For example, two of the fastest growing applications, vehicle tracking and personal location, operate in an often harsh signal reception environment. This can be so severe that even with the current 29 working satellites, GPS may struggle to perform. In exceptional circumstances it can fail to provide a positioning service at all. The simplest way to improve the situation when signal reception is poor, is to add similar signals from alternative satellite systems. This has already been achieved by combining GPS with the Russian satellite positioning system, Global'naya Navigatsionnaya Sputnikova Sistema, abbreviated to GLONASS. The combination of GPS with GLONASS is referred to here as Hybrid. But how good is Hybrid relative to GPS, and how can performance be evaluated objectively? The research project presented here set out to answer this question, and to understand the situations in which Hybrid failed, and ask what solutions were then available to fulfil a positioning task. The problems associated with integrating one satellite positioning system with another, their potential inconsistencies and their impact on positioning errors were also examined. This field of research is relevant to Hybrid as defined here, and also to other mixed systems, for example GPS with EGNOS, a European geostationary satellite system, and GPS with Galileo, a proposed global system controlled by the Europeans. The issues were addressed from the viewpoint of practical usage of the positioning systems. Hence the many and varied experiments to quantify positioning performance using both static receivers, and a variety of platforms with wide ranging levels of vehicle dynamics. The capability of satellite positioning systems to work in the harshest environments, was tested in the proposed Olympic sport of bob skeleton. This involved the development of the acquisition system, and a number of programs. The latter were equally applicable to the ensuing work with road vehicles, and the quantitative assessment of positioning performance relative to a truth. The processes established to manipulate, import, and merge satellite based vehicle tracking data with Ordnance Survey digital mapping products, have already been used in four other projects within the School of Civil Engineering. The software to regularise positioning interval, smoothing processes, and to compare tracking data with a truth, have been similarly provided. Without major funding the outlook for GLONASS and hence Hybrid looks bleak, and it is predicted that without replenishment the constellation may fall to six satellites by the end of 2001. However as mentioned above, the issues identified, and ideas and software developed in this research, will be directly applicable to any future hybridisation of GPS with Galileo

    The performance of hybrid GPS and GLONASS

    Get PDF
    In recent years, the market served by satellite positioning systems has expanded exponentially. It is stimulated by the needs of an ever increasing number and variety of scientific, business and leisure applications. The dominant system is the USA's GPS, or Global Positioning System. However, GPS is not a panacea for all positioning tasks, in any environmental situation. For example, two of the fastest growing applications, vehicle tracking and personal location, operate in an often harsh signal reception environment. This can be so severe that even with the current 29 working satellites, GPS may struggle to perform. In exceptional circumstances it can fail to provide a positioning service at all. The simplest way to improve the situation when signal reception is poor, is to add similar signals from alternative satellite systems. This has already been achieved by combining GPS with the Russian satellite positioning system, Global'naya Navigatsionnaya Sputnikova Sistema, abbreviated to GLONASS. The combination of GPS with GLONASS is referred to here as Hybrid. But how good is Hybrid relative to GPS, and how can performance be evaluated objectively? The research project presented here set out to answer this question, and to understand the situations in which Hybrid failed, and ask what solutions were then available to fulfil a positioning task. The problems associated with integrating one satellite positioning system with another, their potential inconsistencies and their impact on positioning errors were also examined. This field of research is relevant to Hybrid as defined here, and also to other mixed systems, for example GPS with EGNOS, a European geostationary satellite system, and GPS with Galileo, a proposed global system controlled by the Europeans. The issues were addressed from the viewpoint of practical usage of the positioning systems. Hence the many and varied experiments to quantify positioning performance using both static receivers, and a variety of platforms with wide ranging levels of vehicle dynamics. The capability of satellite positioning systems to work in the harshest environments, was tested in the proposed Olympic sport of bob skeleton. This involved the development of the acquisition system, and a number of programs. The latter were equally applicable to the ensuing work with road vehicles, and the quantitative assessment of positioning performance relative to a truth. The processes established to manipulate, import, and merge satellite based vehicle tracking data with Ordnance Survey digital mapping products, have already been used in four other projects within the School of Civil Engineering. The software to regularise positioning interval, smoothing processes, and to compare tracking data with a truth, have been similarly provided. Without major funding the outlook for GLONASS and hence Hybrid looks bleak, and it is predicted that without replenishment the constellation may fall to six satellites by the end of 2001. However as mentioned above, the issues identified, and ideas and software developed in this research, will be directly applicable to any future hybridisation of GPS with Galileo
    corecore