145,878 research outputs found

    Design and implementation of a real-time autonomous navigation system applied to lego robots

    Get PDF
    Teaching theoretical concepts of a real-time autonomous robot system may be a challenging task without real hardware support. The paper discusses the application of the Lego Robot for teaching multi interdisciplinary subjects to Mechatronics students. A real-time mobile robot system with perception using sensors, path planning algorithm, PID controller is used as the case to demonstrate the teaching methodology. The novelties are introduced compared to classical robotic classes: (i) the adoption of a project-based learning approach as teaching methodology; (ii) an effective real-time autonomous navigation approach for the mobile robot. However, the extendibility and applicability of the presented approach are not limited to only the educational purpose

    Developmental Bayesian Optimization of Black-Box with Visual Similarity-Based Transfer Learning

    Full text link
    We present a developmental framework based on a long-term memory and reasoning mechanisms (Vision Similarity and Bayesian Optimisation). This architecture allows a robot to optimize autonomously hyper-parameters that need to be tuned from any action and/or vision module, treated as a black-box. The learning can take advantage of past experiences (stored in the episodic and procedural memories) in order to warm-start the exploration using a set of hyper-parameters previously optimized from objects similar to the new unknown one (stored in a semantic memory). As example, the system has been used to optimized 9 continuous hyper-parameters of a professional software (Kamido) both in simulation and with a real robot (industrial robotic arm Fanuc) with a total of 13 different objects. The robot is able to find a good object-specific optimization in 68 (simulation) or 40 (real) trials. In simulation, we demonstrate the benefit of the transfer learning based on visual similarity, as opposed to an amnesic learning (i.e. learning from scratch all the time). Moreover, with the real robot, we show that the method consistently outperforms the manual optimization from an expert with less than 2 hours of training time to achieve more than 88% of success

    Conjunctive Visual and Auditory Development via Real-Time Dialogue

    Get PDF
    Human developmental learning is capable of dealing with the dynamic visual world, speech-based dialogue, and their complex real-time association. However, the architecture that realizes this for robotic cognitive development has not been reported in the past. This paper takes up this challenge. The proposed architecture does not require a strict coupling between visual and auditory stimuli. Two major operations contribute to the “abstraction” process: multiscale temporal priming and high-dimensional numeric abstraction through internal responses with reduced variance. As a basic principle of developmental learning, the programmer does not know the nature of the world events at the time of programming and, thus, hand-designed task-specific representation is not possible. We successfully tested the architecture on the SAIL robot under an unprecedented challenging multimodal interaction mode: use real-time speech dialogue as a teaching source for simultaneous and incremental visual learning and language acquisition, while the robot is viewing a dynamic world that contains a rotating object to which the dialogue is referring

    Mutual Alignment Transfer Learning

    Full text link
    Training robots for operation in the real world is a complex, time consuming and potentially expensive task. Despite significant success of reinforcement learning in games and simulations, research in real robot applications has not been able to match similar progress. While sample complexity can be reduced by training policies in simulation, such policies can perform sub-optimally on the real platform given imperfect calibration of model dynamics. We present an approach -- supplemental to fine tuning on the real robot -- to further benefit from parallel access to a simulator during training and reduce sample requirements on the real robot. The developed approach harnesses auxiliary rewards to guide the exploration for the real world agent based on the proficiency of the agent in simulation and vice versa. In this context, we demonstrate empirically that the reciprocal alignment for both agents provides further benefit as the agent in simulation can adjust to optimize its behaviour for states commonly visited by the real-world agent
    corecore