5,269 research outputs found

    Robot-sensor synchronization for real-time seamtracking in robotic laser welding

    Get PDF
    The accuracy requirements of laser welding put high demands on the manipulator that is used. To use industrial six-axis robots for manipulating the laser welding optics, sensors measuring the seam trajectory close to the focal spot are required to meet the accuracy demands. When the measurements are taken while the robot is moving, it is essential that they are synchronized with the robot motion. This paper presents a synchronization mechanism between a seam-tracking sensor and an industrial 6-axis robot, which uses Ethernet-based UDP communication. Experimental validation is carried out to determine the accuracy of the proposed synchronization mechanism. Furthermore, a new control architecture, called trajectory-based control is presented, which embeds the synchronization method and allows various sensor-based applications like teaching of a seam trajectory with a moving robot and real-time seam-tracking during laser welding

    Learning Visual Importance for Graphic Designs and Data Visualizations

    Full text link
    Knowing where people look and click on visual designs can provide clues about how the designs are perceived, and where the most important or relevant content lies. The most important content of a visual design can be used for effective summarization or to facilitate retrieval from a database. We present automated models that predict the relative importance of different elements in data visualizations and graphic designs. Our models are neural networks trained on human clicks and importance annotations on hundreds of designs. We collected a new dataset of crowdsourced importance, and analyzed the predictions of our models with respect to ground truth importance and human eye movements. We demonstrate how such predictions of importance can be used for automatic design retargeting and thumbnailing. User studies with hundreds of MTurk participants validate that, with limited post-processing, our importance-driven applications are on par with, or outperform, current state-of-the-art methods, including natural image saliency. We also provide a demonstration of how our importance predictions can be built into interactive design tools to offer immediate feedback during the design process

    Real-time processing of high-resolution video and 3D model-based tracking for remote towers

    Get PDF
    High quality video data is a core component in emerging remote tower operations as it inherently contains a huge amount of information on which an air traffic controller can base decisions. Various digital technologies also have the potential to exploit this data to bring enhancements, including tracking ground movements by relating events in the video view to their positions in 3D space. The total resolution of remote tower setups with multiple cameras often exceeds 25 million RGB pixels and is captured at 30 frames per second or more. It is thus a challenge to efficiently process all the data in such a way as to provide relevant real-time enhancements to the controller. In this paper we discuss how a number of improvements can be implemented efficiently on a single workstation by decoupling processes and utilizing hardware for parallel computing. We also highlight how decoupling the processes in this way increases resilience of the software solution in the sense that failure of a single component does not impair the function of the other components

    Panoramic Human Structure Maintenance based on Invariant Features of Video Frames

    Get PDF
    [[abstract]]Panoramic photography is becoming a very popular and commonly available feature in the mobile handheld devices nowadays. In traditional panoramic photography, the human structure often becomes messy if the human changes position in the scene or during the combination step of the human structure and natural background. In this paper, we present an effective method in panorama creation to maintain the main structure of human in the panorama. In the proposed method, we use an automatic method of feature matching, and the energy map of seam carving is used to avoid the overlapping of human with the natural background. The contributions of this proposal include automated panoramic creation method and it solves the human ghost generation problem in panorama by maintaining the structure of human by energy map. Experimental results prove that the proposed system can be effectively used to compose panoramic photographs and maintain human structure in panorama.[[incitationindex]]SCI[[booktype]]電子

    Intelligent systems for welding process automation

    Get PDF
    This paper presents and evaluates the concept and implementation of two distinct multi-sensor systems for the automated manufacturing based on parallel hardware. In the most sophisticated implementation, 12 processors had been integrated in a parallel multi-sensor system. Some specialized nodes implement an Artificial Neural Network, used to improve photogrammetry-based computer vision, and Fuzzy Logic supervision of the sensor fusion. Trough the implementation of distributed and intelligent processing units, it was shown that parallel architectures can provide significant advantages compared to conventional bus-based systems. The paper concludes with the comparison of the main aspects of the transputer and the DSP-based implementation of sensor guided robots
    corecore