3,100 research outputs found

    Recurrent Attention Models for Depth-Based Person Identification

    Get PDF
    We present an attention-based model that reasons on human body shape and motion dynamics to identify individuals in the absence of RGB information, hence in the dark. Our approach leverages unique 4D spatio-temporal signatures to address the identification problem across days. Formulated as a reinforcement learning task, our model is based on a combination of convolutional and recurrent neural networks with the goal of identifying small, discriminative regions indicative of human identity. We demonstrate that our model produces state-of-the-art results on several published datasets given only depth images. We further study the robustness of our model towards viewpoint, appearance, and volumetric changes. Finally, we share insights gleaned from interpretable 2D, 3D, and 4D visualizations of our model's spatio-temporal attention.Comment: Computer Vision and Pattern Recognition (CVPR) 201

    2.5D multi-view gait recognition based on point cloud registration

    Get PDF
    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM

    A smart environment for biometric capture

    No full text
    The development of large scale biometric systems require experiments to be performed on large amounts of data. Existing capture systems are designed for fixed experiments and are not easily scalable. In this scenario even the addition of extra data is difficult. We developed a prototype biometric tunnel for the capture of non-contact biometrics. It is self contained and autonomous. Such a configuration is ideal for building access or deployment in secure environments. The tunnel captures cropped images of the subject's face and performs a 3D reconstruction of the person's motion which is used to extract gait information. Interaction between the various parts of the system is performed via the use of an agent framework. The design of this system is a trade-off between parallel and serial processing due to various hardware bottlenecks. When tested on a small population the extracted features have been shown to be potent for recognition. We currently achieve a moderate throughput of approximate 15 subjects an hour and hope to improve this in the future as the prototype becomes more complete

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Fast Damage Recovery in Robotics with the T-Resilience Algorithm

    Full text link
    Damage recovery is critical for autonomous robots that need to operate for a long time without assistance. Most current methods are complex and costly because they require anticipating each potential damage in order to have a contingency plan ready. As an alternative, we introduce the T-resilience algorithm, a new algorithm that allows robots to quickly and autonomously discover compensatory behaviors in unanticipated situations. This algorithm equips the robot with a self-model and discovers new behaviors by learning to avoid those that perform differently in the self-model and in reality. Our algorithm thus does not identify the damaged parts but it implicitly searches for efficient behaviors that do not use them. We evaluate the T-Resilience algorithm on a hexapod robot that needs to adapt to leg removal, broken legs and motor failures; we compare it to stochastic local search, policy gradient and the self-modeling algorithm proposed by Bongard et al. The behavior of the robot is assessed on-board thanks to a RGB-D sensor and a SLAM algorithm. Using only 25 tests on the robot and an overall running time of 20 minutes, T-Resilience consistently leads to substantially better results than the other approaches

    Using New Camera-Based Technologies for Gait Analysis in Older Adults in Comparison to the Established GAITRite System

    Get PDF
    Various gait parameters can be used to assess the risk of falling in older adults. However, the state-of-the-art systems used to quantify gait parameters often come with high costs as well as training and space requirements. Gait analysis systems, which use mobile and commercially available cameras, can be an easily available, marker-free alternative. In a study with 44 participants (age ≥ 65 years), gait patterns were analyzed with three different systems: a pressure sensitive walkway system (GAITRite-System, GS) as gold standard, Motognosis Labs Software using a Microsoft Kinect Sensor (MKS), and a smartphone camera-based application (SCA). Intertrial repeatability showed moderate to excellent results for MKS (ICC(1,1) 0.574 to 0.962) for almost all measured gait parameters and moderate reliability in SCA measures for gait speed (ICC(1,1) 0.526 to 0.535). All gait parameters of MKS showed a high level of agreement with GS (ICC(2,k) 0.811 to 0.981). Gait parameters extracted with SCA showed poor reliability. The tested gait analysis systems based on different camera systems are currently only partially able to capture valid gait parameters. If the underlying algorithms are adapted and camera technology is advancing, it is conceivable that these comparatively simple methods could be used for gait analysis
    corecore