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Abstract

We present an attention-based model that reasons on hu-

man body shape and motion dynamics to identify individu-

als in the absence of RGB information, hence in the dark.

Our approach leverages unique 4D spatio-temporal sig-

natures to address the identification problem across days.

Formulated as a reinforcement learning task, our model is

based on a combination of convolutional and recurrent neu-

ral networks with the goal of identifying small, discrimina-

tive regions indicative of human identity. We demonstrate

that our model produces state-of-the-art results on several

published datasets given only depth images. We further

study the robustness of our model towards viewpoint, ap-

pearance, and volumetric changes. Finally, we share in-

sights gleaned from interpretable 2D, 3D, and 4D visual-

izations of our model’s spatio-temporal attention.

1. Introduction

A quick, partial view of a person is often sufficient for a

human to recognize an individual. This remarkable ability

has proven to be an elusive task for modern computer vi-

sion systems. Nevertheless, it represents a valuable task for

security authentication, human tracking, public safety, and

role-based activity understanding [34, 30, 2].

Given an input image, person identification aims to as-

sign identification labels to individuals present in the image.

Despite the best efforts from previous work [79, 80, 40], this

problem remains largely unsolved. Without accurate spa-

tial or temporal constraints, visual features alone are often

intrinsically weak for matching people across time due to

intra-class differences. Additional variances due to illumi-

nation, viewpoint, and pose further exacerbate the problem.

Research findings from physiology and psychology have

shown that gait is unique to each individual [57, 56, 17].

Building on this observation, we aim to learn body shape

and motion signatures unique to each person (see Figure 1).

Inspired by the recent success of the depth modality [4, 77],

our goal is to output an identification label from a depth

image or video.

Time

Figure 1: Gait has been shown to be unique to each person.

We propose a 4D recurrent attention model to learn spatio-

temporal signatures and identify people from depth images.

The primary challenge towards this goal is designing a

model that is not only rich enough to reason about mo-

tion and body shape but also robust to intra-class variabil-

ity. The second challenge is that person identification in-

herently comprises of a large number of classes with few

training examples per class (in some cases a single training

example). Existing datasets [52, 5, 54] often collect front-

facing views with constant appearances (i.e. similar sets of

clothing). While this makes the identification problem more

tractable, we are interested in relaxing these assumptions to

solve a more general identification task which is applicable

to a broader audience.

Our core insight is that we can leverage raw depth video

despite the scarcity of training inputs, to address the afore-

mentioned challenges by formulating the task as a rein-

forcement learning problem. Our approach involves prun-

ing the high dimensional input space and focuses on small,

discriminative regions while being free of visual and tem-

poral assumptions. Concretely, our contributions are:

(i) We develop a recurrent attention model that identifies

humans based on depth videos. Our model leverages a 4D
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input and is robust to appearance and volumetric changes.

By combining a sparsification technique with a reinforce-

ment learning objective, our recurrent attention model at-

tends to small spatio-temporal regions with high fidelity

while avoiding areas with little information (see Section 3).

(ii) We re-examine the person identification task and

build a challenging dataset which taxes existing methods

(see Section 4). We push the limits of our model by varying

the viewing angle and testing on diverse training examples

of people carrying objects (e.g. coffee or laptops) or wear-

ings hats and backpacks.

In Section 4, we show that our model achieves state-of-

the-art results on several existing datasets. Furthermore, we

take advantage of our recurrent attention model and create

interpretable 2D, 3D, and 4D visualizations of hard atten-

tion [71]. Our findings shed new insights on volumetric and

motion-based differences between individuals. To aid in fu-

ture research, we make all code, data, and annotations pub-

licly available upon publication.

2. Related Work

RGB-Based Methods. The primary challenge associ-

ated with identification is intra-class variance. These in-

clude changes in appearance due to illumination, point of

view, pose, and occlusion. There have been many attempts

to solve this problem by improving the feature represen-

tations [24, 68, 22, 78, 79, 37, 80] and by exploring new

similarity metrics [40, 49, 60]. Silhouette-based approaches

ignore color altogether and use anthropometric or geodesic

distances between body parts [34, 44, 64].

Depth-Based Methods. Following suit from silhouette-

based approaches, several depth-based studies have applied

anthropometric and soft biometrics to the 3D human skele-

ton [51, 3, 55, 4, 20]. Harnessing the full power of depth

cameras, several papers investigated 3D point clouds for

person identification [77, 30]. Although these approaches

are successful, they rely on hand-crafted features (e.g. arm

length, torso width) or low-level RGB features (e.g. SURF

[7], SIFT [42]).

Spatio-Temporal Representations. Methods described

thus far have largely ignored spatio-temporal information.

Originally proposed in [26], the gait energy image and ifigts

variants [16, 6, 29, 66], embed temporal information onto a

two-dimensional image by averaging the silhouette across

all frames of a video. Test time predictions are obtained

from a k-nearest neighbor lookup.

More recently, the gait energy image has been extended

into 3D by using depth sensors [28, 63]. Spatial volumes

and higher-dimensional tensors have been proposed for ac-

tivity and action recognition [58, 67, 75, 8, 32, 39], medical

image analysis [62], robotics [47, 48], and human motion

analysis [38] but have not been thoroughly explored in the

person identification domain.

Deep Learning for Identification. A small number of

studies have explored the applicability of deep neural net-

works to person identification. In [73], Yi et al. proposed a

siamese convolutional neural network for similarity metric

learning. In [41], Li et al. proposed a similar approach by

using filter pairs to model photometric and geometric trans-

forms. Following these works, Ding et al. [19] formulated

the input as a triplet containing both correct and incorrect

reference images. In [1], Ahmed et al. introduced cross-

input neighborhood differences.

Our work has several key differences with the aforemen-

tioned works: First, we focus on the depth modality and do

not use any RGB information. Second, the methods above

[73, 41, 19, 1] ingest several images as input and compute

similarity between these inputs. They formulate the iden-

tification problem as an image-similarity task using images

captured from non-overlapping camera views. Our model

uses a single image1 as input and does not rely on metric

learning.

Attention Models. Interpretability of deep learning

models is becoming increasingly important within the ma-

chine learning and computer vision communities. By mea-

suring the sensitivity of output variables to variances in

the input, attention models applied to image classification

[76, 25, 70], image captioning [21, 71, 14], object detec-

tion [11], and tracking [18] have demystified many aspects

of convolutional and recurrent networks. These methods

exploit the spatial structure of the input to understand inter-

mediate network representations. Sequential data, on the

other hand, requires temporal attention models to under-

stand the order dependence of the input data. Recent papers

in speech recognition [23], video captioning [72], and natu-

ral language processing [35, 43, 13] explore the concept of

attention in the temporal domain.

Many deep learning models impose constraints on the

input. Due to the high dimensionality of images (i.e. high

pixel count), preprocessing often includes resizing and/or

cropping the original input image [36]. Videos are often

truncated to a fixed length for training. Due to computa-

tional limitations, this loss of information is necessary to

constrain runtimes. In the next section, we describe our

model and how we balance this trade-off by employing vi-

sual “glimpses” [50] which process small 4D regions with

high fidelity and grow to larger regions with lower detail.

3. Our Model

The goal of our model is to identify humans from depth

images or video. Our model (Figure 2) computes hard atten-

tion regions [71] which are used to predict an identification

label. In this section, we describe our 4D input representa-

tion followed by a discussion of our attention model.

1The input to our model is one image for frame-wise identification or

one sequence for video-level (i.e. temporal or voting) identification.
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Figure 2: Our full model. Dashed arrows indicate information exchange across time steps. Solid arrows indicate information

exchange within a time step. Two time steps are shown with a series of events occurring from left to right. Note: RAM

timestep t refers to the “iteration” of our model and does not refer to the input video timestamp τ . All other variables are

defined in Section 3.2.

3.1. Input Representation

Projections from higher dimensional spaces onto lower

spaces result in information loss. This serves as our mo-

tivation for using 4D data: we want to preserve as much

information as possible and let our model decide the rele-

vant regions. Four-dimensional data consists of a 3D point

cloud (e.g., x, y, and z cooridnate) and time τ . For simplic-

itly, Figure 2 shows the input as 3D point clouds which are

constructed from depth images.

Each training example (x,y) consists of a variable sized

4D tensor x and corresponding label y. The tensor is vari-

able due to variable video lengths. Let f denote the number

of frames in video i and let x, y and z denote the width,

height, and depth dimensions of our tensor.2

x ∈ R
f×x×y×z and y ∈ [1, ..., C] (1)

where C is the number of classes. For an average video

containing 500 frames, flattening x leads to a feature vec-

tor of 2.5×109 elements. For comparison, a 227 × 227
RGB image (typical for a convolutional network), results in

1.2×106 elements. This means that our model must oper-

ate on an input space three orders of magnitude larger than

common convolutional networks. Consequently, our model

must be designed to intelligently navigate this high dimen-

sional space.

2We use a tensor of size 250× 100× 200.

3.2. Recurrent Attention Model

Given this high-dimensional depth representation, we

want our model to focus on smaller, discriminative regions

in the input space. Minh et al. [50] recently proposed the re-

current attention model (RAM) for image classification and

reinforcement learning problems. While they show promis-

ing results, they enjoyed several advantages. First, training

data is plentiful. Image classification has been well-studied

and several large benchmarks exist. Dynamic environments

such as a control-based video game can generate data on-

the-fly as the game is played. Second, the input dimension-

ality of these problems is relatively small: MNIST is 28×28
while the control game is 24× 24 [50].

Person identification, on the other hand, does not enjoy

these advantages. Instead, we are tasked with limited, high-

dimensional training data. Figure 2 shows an overview of

our proposed model. It consists of a glimpse layer which

down-samples the input, an encoding stage which acts as an

additional dimensionality reduction tool, and a core RAM

network responsible for spatio-temporal learning.

Glimpse Layer. The goal of the glimpse layer is two-

fold: (i) it must avoid (or greatly limit) information loss and

(ii) it must refrain from processing large inputs. At a given

time step t, our model does not have full access to the in-

put x but instead extracts a partial observation or “glimpse”

denoted by ρ(x, ϕt). A glimpse encodes the region around
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ϕt with high resolution but uses a progressively lower res-

olution for points further from ϕt. Adopting a multi-scale

strategy has been shown to be an effective de-noising tech-

nique [81]. Additionally, this results in a tensor with much

lower dimensionality than the original input x. By focusing

on specific regions, we can reduce the required computation

by our model, reducing the loss of spatio-temporal detail,

and reduce the effect of noise.

As shown in Figure 2, a glimpse is comprised of G hy-

percube patches. The first patch has a side length of gs and

maintains full resolution of the input centered at ϕ. The sec-

ond patch has a side length of 2gs and is sampled at 1/2 res-

olution. Patches grow in size with progressively lower res-

olution. Specifically, the kth patch has a side length of kgs
and is sampled at 1/k of the original input resolution. The

final glimpse is a concatenation of these hypercube patches.

Encoder. The glimpse still contains a large number of

features (on the order of 1×106). We must further com-

press the glimipse before it becomes a feasible solution for

our data-limited person identification task. To accomplish

this, we use an encoding layer to further reduce the feature

space. In our model, this is done with a 4D convolutional

autoencoder [45, 33]. The encoder layer is trained offline

and separately from the RAM. During RAM training and

test time, encoded features are denoted as ct.

Core RAM Unit. As mentioned previously, the num-

ber of features associated with a 4D input is on the order of

1×109. Conventional deep learning methods cannot feasi-

bly explore and learn from the full input space. Motivated

by this, we use a recurrent attention model. Our goals of the

RAM are two-fold: First, model interpretability is an over-

arching theme of this work. Given image-based input, an

attention-based model allows us to visually understand hu-

man shape and body dynamics. Second, a RAM provides us

with computational advantages by pruning the input space

by focusing on rich, discriminative regions.

As shown in Figure 2 our model is a recurrent network: it

consists of a long short-term memory (LSTM) unit [27] and

two sub-networks. Parameterized by θr, our LSTM receives

encoded features ct and the previous hidden layer ht−1 at

each time step t and outputs a hidden state ht.

Sub-Networks. Before the next iteration of our RAM,

our model must take two actions: (i) it decides the next

glimpse location and (ii) it outputs a predicted identifica-

tion label for the current time step. We compute these by

using two sub-networks: the location and action network,

respectively.

The location network stochastically selects the next

glimpse location using the distribution parametrized by

f(ht; θℓ) (where θℓ refers to the location network’s parame-

ters). Similar to [50], the location network outputs the mean

of the location policy (defined by a 4-component Gaussian)

at time t and is defined by: f(ht; θℓ) = tanh(Linear(ht))

where Linear(•) is a linear transformation.

The action network (parameterized by θα), outputs a pre-

dicted class label ŷ given the current LSTM hidden state,

ht. Parameterized by f(ht; θα), the action network con-

sists of a linear and softmax layer defined by f(ht; θα) =
exp(Linear(ht))/Z where Z is a normalizing factor. The

predicted class label ŷt is then selected from the softmax

output.

3.3. Training and Optimization

Formulation. Depth video is inherently a large feature

space. To avoid exploring the entire input space, we pose

the training task as a reinforcement learning problem. After

our model decides the label ŷ and next glimpse location ϕ,

our model receives a reward R where R = 1 if ŷt = y at

time T , where T is a threshold for the maximum number of

time steps; otherwise R = 0. Let Θ = {θr, θℓ, θα} denote

all parameters of the RAM.

Let s1:t = x, ϕ1, ŷ1, ...,x, ϕt, ŷt denote the historical se-

quence of all input-action pairs (i.e. input tensor, predicted

label, and next glimpse). We call this a glimpse path. A

glimpse path shows where our model “looks at” over time3.

Our model must learn a stochastic policy π(ϕt, ŷt|s1:t; Θ)
which maps the glimpse path s1:t to a distribution over ac-

tions for the current time step. The policy π is defined by

our core RAM unit and the history st is embedded in the

LSTM’s hidden state ht.

Optimization. The policy of our model induces a distri-

bution over possible glimpse paths. Our goal is to maximize

the reward function over s1:N :

J(Θ) = Ep(s1:t;Θ) [R] (2)

where p(s1:T ; Θ) depends on the policy π. However, com-

puting the expectation introduces unknown environment pa-

rameters which makes the problem intractable. Formulating

the task as a partially-observable Markov decision process

allows us to compute a sample approximation to the gradi-

ent, known as the REINFORCE rule [69]:

∇ΘJ(Θ) =

T
∑

t=1

Ep(s1:T ;Θ)

(

∇Θ log π(y|s1:t; Θ)R
)

(3)

≈
1

M

M
∑

i=1

T
∑

t=1

∇Θ log π(y|s
(i)
1:t; Θ)R(i) (4)

where s
(i)
1:t denotes the glimpse path, R(i) denotes the re-

ward, and y
(i) denotes the correct label for the ith training

example. Additionally, ∇θ log π(u
(i)
t |s

(i)
1:t; θ)R

(i) is the gra-

dient of the LSTM. Consistent with [50], we train the action

network with the cross entropy loss function and train the

3For 4D input, time refers to the iteration of the RAM and not the input

video’s frame order.
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BIWI IAS-A/B PAVIS DPI-T

# Unique Subjects 50 (28) 11 (11) 79 (79) 12 (12)

# Total Videos 50 (56) 11 (11) 79 (79) 300 (355)

# Appearances/class 1 (2) 1 (2) 1 (2) 5 (5)

# 2D inputs/class 479 (551) 701 (739) 5 (5) 336 (398)

# 3D inputs/class 479 (551) 701 (739) 5 (5) 336 (398)

# 4D inputs/class 1 (2) 1 (1) 1 (1) 25 (30)

Table 1: Comparison of datasets. DPI-T is our newly col-

lected dataset. We list the number of subjects, images, and

videos for both the training and test sets. The test set is

shown in parenthesis. Appearance is defined by a person

wearing unique clothing or distinct visual appearance.

location network with REINFORCE. This formulation al-

lows our model to focus on salient 3D regions in both space

and time.

Advantages. A major benefit of this formulation is that

limited training data is no longer an issue. Our model is

trained on glimpses (i.e. subsets of the input) and not the

entire video sequence. Therefore, the effective number of

training examples made available to our model is on the

order of 1×106 to 1×109 per video (i.e. number of pos-

sible glimpses). Despite having a single video as input, our

model almost never sees the same training example twice.

Our model is still limited by the number of training data but

our formulation makes it less of a concern.

4. Experiments

First, we describe our datasets and evaluation metrics.

This is followed by a discussion of experimental, hyper-

parameter, and design selections. We then present results

for the single-shot (single image) and multi-shot (multi-

frame) person identification task. We then show 2D, 3D,

and 4D visualizations followed by concluding remarks on

our model’s limitations.

4.1. Datasets

Our goal is to identify humans based on their 3D shape

and body dynamics captured by a depth camera. The major-

ity of human-based RGB-D datasets are catered to human

activity analysis and action recognition [12, 10, 31]. Since

they generally consist of many gestures performed by few

subjects, these datasets are not suited for the identification

problem. We hence use existing depth-based identification

datasets and collected a new one to further test our model.

We evaluate our model on several existing depth-based

identification datasets: BIWI [52], IIT PAVIS [5], and IAS-

Lab [54]. These datasets contain 50, 79, and 11 humans,

respectively. For BIWI, we use the full training set and the

Walking test set. For PAVIS, we use Walking1 and Walking2

as the training and test set, respectively. For IAS-Lab, we

use the full training set and both test splits.

Existing datasets impose constraints to simplify the iden-

tification problem (e.g., few sets of clothing per person,

Figure 3: Sample images from our Depth-Based Person

Identification from Top (DPI-T) dataset. Each row denotes

a different person. The three left columns show RGB im-

ages for convenience. Our model only uses depth images,

as depicted in the right column.

front-facing views, or slow walking speed). We collected

a new dataset: Depth-Based Person Identification from Top

(DPI-T), which is different from previous datasets.

We provide more observations per individual. On av-

erage, individuals appear in a total of 25 videos across sev-

eral days. This naturally results in individuals wearing dif-

ferent sets of clothing – 5 different sets of clothing on av-

erage. Figure 3 shows three individuals from our dataset

wearing different sets of clothing. Additionally, people in

our dataset walk at variable speeds depending on the time

of day or week.

Challenging top-view angles. In real-world applica-

tions such as smart spaces and public environments (e.g.,

hospitals, retail stores), cameras are often attached to the

ceiling pointed down, as opposed to clean, frontal or side

view images available in existing datasets. This intro-

duces self-occlusion challenges and often leads to unde-

tected faces and incomplete 3D point cloud reconstructions.

People are holding objects. Existing datasets collect

data from the simple case of walking in a controlled en-

vironment. In our dataset, people are “in the wild,” often

holding objects such as coffee, laptops, or food. Addition-

ally, since our dataset is collected across a long period of

time, people often wear hats, bags, or carry umbrellas (see

Figure 3). A table showing the characteristics of existing

datasets and our new dataset is shown in Table 1.

4.2. Evaluation Metrics

Person identification can be solved in a “single-shot”

manner using one image to produce a label or a “multi-shot”

method which leverages multiple frames, temporal features,

or multi-frame voting schemes. Below, we provide evalua-

tion results for both single-shot and multi-shot approaches.

1233



Top-1 Recognition Rate (%) Normalized Area Under the Curve (nAUC)

# Modality Methods BIWI IAS-A IAS-B PAVIS DPI-T BIWI IAS-A IAS-B PAVIS DPI-T

1 Depth Random 2.0 9.1 8.1 1.3 8.3 51.0 54.5 54.5 50.6 54.2

2 Depth Human Performance 6.7 21.2 15.1 1.7 19.2 — — — — —

3 Depth Skeleton (NN) [5] — — — 15.0 — — — — 91.8 —

4 Depth Skeleton (NN) [52] 21.1 22.5 55.5 28.6 — 81.7 72.8 86.3 89.9 —

5 Depth Skeleton (SVM) [53] 13.8 — — 35.7 — 86.6 — — 92.8 —

6 Depth 3D CNN 27.7 44.2 56.2 27.5 23.7 88.2 86.1 86.0 89.2 75.6

7 Depth 2D RAM 24.7 46.9 61.0 30.5 33.8 87.4 87.7 86.8 90.1 82.5

8 Depth 3D RAM 30.1 48.3 63.7 41.3 47.5 88.7 88.5 87.7 93.7 88.3

9* RGB Face Detection [52] 36.7* — — — — 87.6* — — — —

10* RGB PTZ Max-Var [61] — — — 73.1* — — — — 98.7* —

11* RGB-D Face+Skeleton [53] 43.9* — — — — 90.2* — — — —

12* RGB-D PCM+Skeleton [52] 27.4* 25.6* 63.3* — — 87.4* 75.5* 86.3* — —

Table 2: Single-shot identification performance. Methods shown above use only spatial information. A summary of each

method can be found in Section 4.4. Both metrics were computed on the test set. Larger values are better. Dashes indicate

that no published information is available. (*) Although not a fair comparison, for sake of completeness, we list RGB and

RGB-D methods.
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Figure 4: (a-c) Cumulative matching curves for test set performance on various datasets and models. Dataset details can be

found in Section 4.1. Model details can be found in Section 4.4. The y axis denotes recognition rate. For the x axis, rank-k
is the recognition rate if the ground truth label is within the model’s top-k predictions.

Specific metrics include the top-1 recognition rate, cu-

mulative matching curve (CMC), normalized area under the

curve (nAUC) metrics. Top-k recognition rate indicates the

fraction of test examples that contained the ground truth

label within the top-k predictions. Generalizing the top-k
metric to higher ranks (up to the number of people in the

dataset), produces the cumulative matching curve. Integrat-

ing the area under the CMC curve and normalizing for the

number of ranks produces the nAUC.

4.3. Experimental Settings

Tensors were fixed to a size of 250 × 100 × 200 and

converted to integer indices corresponding to the x, y, and

z real world coordinates. The x and y units represent real

world centimeters while the z units represents 10 millime-

ters. Glimpse locations are encoded as ϕ = (x, y, z, τ)
where x, y, z are real values while τ is integer valued. The

first glimpse patch has a side length of 8 tensor units and we

use 5 glimpse patches. For 3D and 4D inputs, we augment

the data by applying Gaussian noise, with mean of 0 cm

and 5 cm variance, to each point in the point cloud. Images

and tensors are shifted between 0 and ±5 cm in all direc-

tions about the origin and randomly scaled between 0.8×
and 1.2×. We train our model from scratch using stochas-

tic gradient descent with mini-batches of size 20, a learning

rate of 1×10−4, momentum of 0.9, and weight decay of

5×10−4. The CNN was pretrained on augmented training

examples before RAM training. All learning layers employ

dropout [65] with 0.5 probability.

4.4. Baselines

Single-Shot Identification. We compare our recurrent

attention model to several depth-based methods. Table 2

shows various methods and results for the single-shot iden-

tification task: (1) We computed performance using a uni-

formly random guessing strategy. (2) Four humans man-

ually performed the identification task. Each human was

shown a single test input and was given full access to the

training data. (3-5) Distances between skeleton joints are

used as hand-crafted features [5, 52, 53]. (6) A three-

dimensional CNN operates on 3D point clouds. (7) A two-

dimensional RAM operates on depth images. (8) A three-
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Top-1 Recognition Rate (%) Normalized Area Under the Curve (nAUC)

# Modality Methods BIWI IAS-A IAS-B PAVIS DPI-T BIWI IAS-A IAS-B PAVIS DPI-T

1 Depth Random 2.0 9.1 8.1 1.3 8.3 51.0 54.5 54.5 50.6 54.2

2 Depth Human Performance 6.7 21.2 15.1 1.7 19.2 — — — — —

3 Depth Energy Image [16] 21.4 25.6 15.9 29.1 18.5 73.2 72.1 66.0 81.2 75.8

4 Depth Energy Volume [63] 25.7 20.4 13.7 18.9 14.2 83.2 66.2 64.8 68.3 65.5

5 Depth Skeleton (NN) [53] 39.3 — — — — — — — — —

6 Depth Skeleton (SVM) [53] 17.9 — — — — — — — — —

7 Depth Skeleton (LSTM) 15.8 20.0 19.1 14.5 — 65.8 65.9 68.4 64.0 —

8 Depth 3D CNN+Avg Pooling [9] 27.8 33.4 39.1 27.5 28.4 84.0 81.4 82.8 80.6 82.5

9 Depth 3D LSTM 27.0 31.0 33.8 20.3 23.9 83.3 77.6 78.0 77.1 77.9

10 Depth 4D RAM 45.3 53.5 64.4 43.0 55.6 91.2 91.4 89.0 93.4 91.6

11* RGB Face Detection [52] 57.1* — — — — — — — — —

12* RGB-D Face+Skeleton [53] 67.9* — — — — — — — — —

13* RGB-D MCL+Skeleton [59] — — — 89.0* — — — — 98.9* —

14* RGB-D PCM+Skeleton [52] 42.9* 27.3* 81.8* — — — — — — —

Table 3: Multi-shot identification performance. Methods shown above use multiple test images or use temporal information.

A summary of each method can be found in Section 4.4. Both metrics were computed on the test set. Larger values are better.

Dashes indicate that no published information is available. (*) Although not a fair comparison, for sake of completeness, we

list RGB and RGB-D methods.
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Figure 5: Hard 4D attention regions. Bright colored regions indicate areas closer to the glimpse center. Each point cloud is

shown above in three dimensions (x, y, z) while the point clouds are arranged in video-order starting from the left. Arrows

indicate jumps in time τ . Although sparse point clouds are shown above, our model operates on the raw, dense point clouds.

dimensional RAM operates on 3D point clouds. Although

the focus of our paper is depth-based person identifica-

tion, for completeness, we include related RGB and RGB-D

methods to provide a more holistic view of the field. (9) A

face descriptor is used [52]. (10) A point-tilt-zoom camera

selectively zooms in on different parts of the image [61].

(11) A facial descriptor is concatenated with distances be-

tween skeleton joints [53]. (12) Similarity scores are com-

puted on 3D point clouds and distances between skeleton

joints [52].

Multi-Shot Identification. Table 3 list several multi-

shot methods. (1-2) We use random and human perfor-

mance as baselines. (3-4) We evaluate the gait energy im-

age [26] and volume [63]. (5-6) These methods use hand-

crafted skeleton features with an inter-frame voting system.

(7) Pairwise skeleton joint distances (same as 5-6) are fed

into a LSTM. (8) A 3D CNN with average pooling [9] over

time [74] . (9) A 3D LSTM operates on 3D point clouds.

(10) Our final RAM model. (11-12) Face descriptors are

used with a voting system. (13) A Multiple Component

Dissimilarity (MCD) metric is computed on a pair of im-

ages. (14) RGB-D point cloud matching plus hand-crafted

features are used for identification.

4.5. Single­Shot Identification Performance

Learned encoding improves performance. To better

understand the source of our performance, we reduced the

input dimensionality of our RAM and evaluated a 2D and

3D variant. The 2D and 3D models were evaluated on

the single-shot task. As the dimensionality of the input in-

creases from 2D to 3D, the performance of our RAM mono-

tonically increases (see Figure 4). Contrast this with gait

energy in Table 2. Gait energy undergoes a similar transfor-

mation from 2D to 3D (i.e. image to volume), but exhibits

lower performance in the higher-dimensional case. This in-

dicates that our learned encoder is able to preserve perti-

nent information from higher dimensional inputs whereas

the gait energy volume fails without such encoding.
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RAM outperforms deep learning baselines. As fur-

ther validation of our model’s performance, we evaluated a

3D convolutional neural network [33]. The input to both

the 3D CNN and 3D RAM are 3D point clouds. As shown

in Table 2, our 3D RAM model outperforms the 3D CNN.

This confirms our hypothesis that our RAM is able to lever-

age glimpses to artificially increase the number of training

examples and improve performance. The 3D CNN does not

perform such data augmentation and instead operates on the

entire point cloud.

4.6. Multi­Shot Identification Performance

Our final model (4D RAM) outperforms the human base-

line and existing depth-based approaches. Both Munaro

et al. [52] and Barbosa et al. [5] used distances between

skeleton joints as features. We list the performance of these

hand-crafted features in Table 3. Results show that these

features are unable to infer the complex latent variables.

Our 4D RAM model also outperforms an RGB-D method

(13) in Table 3. Proposed in [52], method (13) computes a

standardized 3D point cloud representation with the above

skeleton-distance features. Although (13) leverages RGB

information, it analyzes the entire point cloud which may

include extraneous noise. Our model avoids noisy areas by

selecting glimpses which contain useful information.

4.7. Hard Attention Regions

There is one key difference between our 3D and 4D

RAM. In the 3D case, our model must “pay attention” to

regions for each frame τ . However, in the 4D case, our

model does not have this requirement since τ is a free pa-

rameter. Our model has full discretion on which frames to

“pay attention to” and can move both forward and back-

ward in time as needed. We analyze this in Figure 5. Over

the course of the video, p(ŷt = y) varies. Not only can our

model change the glimpse’s spatial location in each frame,

it can also change the magnitude. Although our model has

no explicit notion of attention magnitude, it can indirectly

mimic the concept. To reduce the magnitude of attention

given to frame k, our model moves the glimpse center to

a frame further away from k. Although the overal “mag-

nitude” of attention remains constant for each glimpse, the

amount of attention given to k has been reduced.

As shown in Figure 5, our model begins at ϕ1, “looks

at” the person’s shoulder, jumps to a different frame, and

continues “staring at” the shoulder. One interpretation of

this is that our model has learned to identify periodic cy-

cles. Interestingly, it has been shown in the biological lit-

erature that males exhibit strong rotational displacement at

the shoulders while walking [46]. Our model’s attention

corroborates this claim. The model then jumps backward in

time and attends to the feet at ϕ3. This indicates that leg

motions (i.e. gait) potentially provide traces of identity. It

(a)

(b)

Figure 6: Two-dimensional projections of our model’s 4D

attention. (a) Glimpse paths. Green and red lines indicate

correct and incorrect class label predictions, respectively.

Circles denote the final glimpse location which led to the

prediction. (b) Glimpse heatmap. Red regions denote ar-

eas on the human body frequently visited by our model.

Heatmaps were smoothed with a Gaussian filter.

is quite possible that this particular glimpse path was taken

since our learned policy simply never explored other paths,

but our model was trained over many epochs with different

initial glimpse locations to reduce this possibility.

We then project the 4D attention onto a 2D image. Fig-

ure 6a shows glimpse paths taken by our model. Notice

how it nearly always visits a major skeleton joint. Figure

6b shows an attention heatmap over all pixels. It illustrates

that different regions of the body attract varying levels of

attention. Our model easily identifies unique shoes or hair

styles. Furthermore, it identifies the left female’s hips as

a discriminative region. As confirmed in the biomechan-

ics literature [15], females demonstrate strong lateral sway

in the hip region. For some females, this alone can be the

unique motion signature.

5. Conclusion

We introduced a recurrent attention model that identi-

fies discriminative spatio-temporal regions for the person

identification problem from depth video. Our model learns

unique volumetric signatures from a high-dimensional 4D

input space. Reducing the dimensionality through glimpses

and an encoder allows us to train a recurrent network with

a LSTM module. Evaluating our model’s performance on

two, three, and four dimensional inputs showed that our at-

tention model achieves state-of-the-art performance on sev-

eral person identification datasets. Visualizations of our

model’s attention offer new insights for future research in

computer vision, biomechanics, and physiology.
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