25 research outputs found

    A new method for simplification and compression of 3D meshes

    Get PDF
    We focus on the lossy compression of manifold triangle meshes. Our SwingWrapper approach partitions the surface of an original mesh M into simply-connected regions, called triangloids. We compute a new mesh M\u27. Each triangle of M\u27 is a close approximation of a pseudo-triangle of M. By construction, the connectivity of M\u27 is fairly regular and can be compressed to less than a bit per triangle using EdgeBreaker or one of the other recently developed schemes. The locations of the vertices of M\u27 are compactly encoded with our new prediction scheme, which uses a single correction parameter per vertex. For example, a variety of popular models retiled with our approach yield 10 times fewer triangles without exceeding an error of 1% of the radius of the bounding ball. Vertices of M\u27 are encoded with an average of 6 bits, which results in a total storage of 0.4 bits per triangle of the original mesh. The proposed solution may also be used to encode crude meshes for adaptive transmission and for controlling subdivision surfaces

    Connectivity Compression for Irregular Quadrilateral Meshes

    Get PDF
    Applications that require Internet access to remote 3D datasets are often limited by the storage costs of 3D models. Several compression methods are available to address these limits for objects represented by triangle meshes. Many CAD and VRML models, however, are represented as quadrilateral meshes or mixed triangle/quadrilateral meshes, and these models may also require compression. We present an algorithm for encoding the connectivity of such quadrilateral meshes, and we demonstrate that by preserving and exploiting the original quad structure, our approach achieves encodings 30 - 80% smaller than an approach based on randomly splitting quads into triangles. We present both a code with a proven worst-case cost of 3 bits per vertex (or 2.75 bits per vertex for meshes without valence-two vertices) and entropy-coding results for typical meshes ranging from 0.3 to 0.9 bits per vertex, depending on the regularity of the mesh. Our method may be implemented by a rule for a particular splitting of quads into triangles and by using the compression and decompression algorithms introduced in [Rossignac99] and [Rossignac&Szymczak99]. We also present extensions to the algorithm to compress meshes with holes and handles and meshes containing triangles and other polygons as well as quads

    Spectral compression of mesh geometry

    Full text link

    Lossless Compression of Predicted Floating-Point Geometry

    Get PDF
    The sizeof geometric data sets in scientific and industrial applications is constantly increasing. Storing surfng or volume meshes in standard uncompressedf ormats results in large files that are expensive to store and slow to load and transmit. Scientists and engineersofne refeer ff using mesh compression because currently available schemes modif the mesh data. While connectivity is encoded in a lossless manner, the floating-point coordinates associated with the vertices are quantized onto aunif6: integer grid to enable e#cient predictive compression. Although a fine enough grid can usually represent the data with su#cient precision, the original floating-point values will change, regardless of grid resolution. In this paper we describe a methodf or compressing floating-point coordinates with predictive coding in a completely lossless manner. The initial quantization step is omitted and predictions are calculated in floating-point. The predicted and the actual floating-point values are broken up into sign, exponent, and mantissa and their corrections are compressed separately with context-based arithmetic coding. As the quality of the predictions varies with the exponent, we use the exponent to switch between di#erent arithmetic contexts. We report compression results using the popular parallelogram predictor, but our approach will work with any prediction scheme. The achieved bit-ratesf or lossless floating-point compression nicely complement those resultingfsu unifting quantizing with di#erent precisions

    Optimal Bit Allocation in 3D Compression

    Get PDF
    To use 3D models on the Internet or in other bandwidth-limited applications, it is often necessary to compress their triangle mesh representations. We consider the problem of balancing two forms of lossy mesh compression: reduction of the number of vertices by simplification, and reduction of the number of bits of resolution used per vertex coordinate via quantization. Let A be a triangle mesh approximation for an original model O. Suppose that A has V vertices, each represented using B bits per coordinate. Given a file size F for A, what are the optimal values of B and V? Given a desired error level E, what are estimates of B and V, and how many total bits are needed? We develop answers to these questions by using a shape complexity measure K that allows us to express the optimal value of B for a general model in terms of V and K alone. We give formulas linking B, V, F, E and K, and we provide a simple algorithm for estimating the optimal B and V for an existing triangle mesh with a given file size F

    Compressed Progressive Meshes

    Get PDF
    Most systems that support the visual interaction with 3D models use shape representations based on triangle meshes. The size of these representations imposes limits on applications, where complex 3D models must be accessed remotely. Techniques for simplifying and compressing 3D models reduce the transmission time. Multi-resolution formats provide quick access to a crude model and then refine it progressively. Unfortunately, compared to the best non-progressive compression methods, previously proposed progressive refinement techniques impose a signitifant overhead when the full resolution model must be downloaded. The CPM (Compressed Progressive Meshes) appreach proposed here eliminates this overhead. It uses a new "patching" technique, which refines the topology of the mesh in batches, which each increase the number of vertices by up to 50%. Less than 4 bits per triangle encode where and how the topological refinements should be applied. We estimate the position of new vertices from the positions of their topological neighbors in the less refined mesh using a new estimator that leads to representations of vertex coordinates that are 50% more compact than previously reported progressive geometry compression techniques

    On the performance of metrics to predict quality in point cloud representations

    Get PDF
    Point clouds are a promising alternative for immersive representation of visual contents. Recently, an increased interest has been observed in the acquisition, processing and rendering of this modality. Although subjective and objective evaluations are critical in order to assess the visual quality of media content, they still remain open problems for point cloud representation. In this paper we focus our efforts on subjective quality assessment of point cloud geometry, subject to typical types of impairments such as noise corruption and compression-like distortions. In particular, we propose a subjective methodology that is closer to real-life scenarios of point cloud visualization. The performance of the state-of-the-art objective metrics is assessed by considering the subjective scores as the ground truth. Moreover, we investigate the impact of adopting different test methodologies by comparing them. Advantages and drawbacks of every approach are reported, based on statistical analysis. The results and conclusions of this work provide useful insights that could be considered in future experimentation

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Random-Accessible Compressed Triangle Meshes

    Full text link

    Variable Code-Mode Based Connectivity Compression for Triangular Meshes

    Full text link
    corecore