

A new method for simplification and
compression of 3D meshes

MARCO ATTENE

Rapporto Tecnico N. 14/2001

Genova, Dicembre 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37833001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
We focus on the lossy compression of manifold triangle meshes. Our SwingWrapper approach partitions the surface
of an original mesh M into simply-connected regions, called triangloids. We compute a new mesh M’. Each triangle
of M’ is a close approximation of a pseudo-triangle of M. By construction, the connectivity of M’ is fairly regular
and can be compressed to less than a bit per triangle using EdgeBreaker or one of the other recently developed
schemes. The locations of the vertices of M’ are compactly encoded with our new prediction scheme, which uses a
single correction parameter per vertex. For example, a variety of popular models retiled with our approach yield 10
times fewer triangles without exceeding an error of 1% of the radius of the bounding ball. Vertices of M’ are
encoded with an average of 6 bits, which results in a total storage of 0.4 bits per triangle of the original mesh. The
proposed solution may also be used to encode crude meshes for adaptive transmission and for controlling
subdivision surfaces.

Figure 1: The original model(first from left) containing 134,074 triangles requires 4,100,000 bytes when stored as a wrl file; A
dense partitioning of its surface into regular triangloids (second) was produced by SwingWrapper and color-coded according to
their EdgeBreaker labels; The corresponding retiled triangle mesh (third) was generated by flattening the triangloids. It deviates
form the original by less than 0.6% of the radius of the bounding ball. Its 13642 triangles were encoded with 3.5 bits per triangle
using Edgebreaker’s connectivity compression combined with a novel geometry predictor. The resulting total of 6042 bytes
represents a 678-to-1 compression ratio; A coarser partitioning (fourth) decomposes the original surface into 1505 triangloids.
The corresponding retiling (last) approximating the original within 4%, is encoded with 980 bytes: A 4000-to-1 compression).

INTRODUCTION
3D graphics plays an increasingly important role in applications where 3D models are accessed through the Internet.
Due to improved design and model acquisition tools, to the wider acceptance of this technology, and to the need for
higher accuracy, the number and complexity of these models are growing more rapidly than phone, network, and air
bandwidth. Consequently, it is imperative to continue increasing the terseness of 3D data transmission formats and
the performance and reliability of the associated compression and decompression algorithms.
Although many representations have been proposed for 3D models, polygon and triangle meshes are the de facto
standard for exchanging and viewing 3D models, because they are simple to generate, store, and process, and
because they are well supported by graphics adapters, APIS and standards. Triangle meshes that form accurate
representations of 3D shapes involve large numbers of triangles and thus require a significant amount of storage
space or transmission time. Thus it is important to compress them.
A triangle mesh may be represented by its vertex data and by its connectivity. Vertex data comprises coordinates of
the vertices and optionally the vertex colors or normal and texture coordinate. In its simplest form, connectivity
captures the incidence relation between the triangles of the mesh and their bounding vertices. It may be represented
by a triangle-vertex incidence table, which associates with each triangle the references to its three bounding vertices.
Many applications do not require that the exact original mesh (which is often an approximation of some real object
or of an ideal curved shape) be preserved. Thus it is appropriate and ofen advantageous to use lossy compression.

The SwingWrapper approach proposed here and illustrated in Figure 1 produces an approximating mesh particularly
well suited for compression.
Simplification and compression have been separated in the past. Simplification was focused on reducing the triangle
count while minimizing or not exceeding some error estimate. Most compression techniques have been lossless
(except for the quantization of the vertex coordinate). We combine them here, proposing a particular retiling
approach that reduces the triangle-count while generating a meshes particularly suitable for compression, because it
is fairly regular (so that its connectivity can be encoded concisely) and because the locations of its vertices are
constrained (so that they are each defined by a single parameter) and quantized (so that the difference between their
predicted and actual location can be encoded with few bit integer).

PRIOR ART
For manifold meshes with few handles, the number of triangles is roughly twice the number of vertices.
Consequently, when pointers or integer indices are used as vertex-references and when floating point coordinates are
used to encode vertex locations, uncompressed connectivity data consumes twice more storage than vertex
coordinates. This resulted in the development of a number of algorithms for the compression of the connectivity.
The connectivity of a triangle mesh that is homeomorphic to a sphere corresponds to a planar graph. Compact
encodings of such graphs and threir worst case bounds have been studied for over 40 years [1] and remain a vibrant
research topic [17][3][4][18][19][20][21]. Recent results guarantee less than 2 bits per triangle encodings for the
connectivity of such meshes [19][18]. The connectivity of regular meshes, where most triangles have exactly six
neighbors, may be encoded at a significantly lower cost [4][21][24]. To benefit from these advances, we strive to
produce fairly regular retilings, however, the main benefit of the SwingWrapper approach descibed in this paper lies
in the way in which we constrain vertex locations, so as to reduce their storage.
3D compression schemes developed over the last seven years have already impacted the design of hardware graphic
adapters [2], of the MPEG-4 standard [3], and of 3D graphics software products [4]. These schemes encode triangle
meshes and thus allocate a significant amount of storage to the precise location of vertices and to the connectivity of
the mesh. Yet, most applications do not require that the precise vertex positions on the surface and the original mesh
connectivity be preserved. Instead, there is a growing need for the most effective compression technique capable of
transmitting a sufficiently close geometric approximation of a surface and of its photometric properties. Techniques
based on a retiling of the model promise to provide higher compression ratios. For example, a mesh can be retiled
[34][35] by inserting few new vertices, distributed regularly with a density that may be uniform or that may depend
on the local curvature. In a second step, the numerous original vertices are removed. In a different approach, when
the approximating surface is formulated as the result of a regular subdivision process applied to a coarse triangle
mesh [5], the cost of storing connectivity is drastically reduced. When vertices are constrained to lie on specific rays
emanating from a coarse mesh [6], their position may be encoded using a single coordinate. These approaches
involve the delicate process of establishing a one-to-one mapping between the original surface and an approximating
triangle mesh.
In many situations, considerable savings may be achieved by initially transmitting a crude approximation and by
holding off the transmission of its refinements until they become necessary, so several methods for a progressive
encoding [7][8][9][10][11] have been developed.
3D compression has also been investigated for meshes with properties [12][13] and it has been improved for
rendering and visualization purposes [14][15], where, when a slight loss of information is tolerable, high frequencies
can be simplified [16].
Although it may easily be formulated as a modification of schemes that were designed to take advantage of the
regularity of the connectivity of the mesh [4][21], for simplicity, we chose to implement SwingWrapper as a
modification of the EdgeBreaker compression scheme [19][24].
As several other compression schemes [3][4][17], Edgebreaker visits the triangles in a spiraling (depth-first)
triangle-spanning-tree order and generates a string of descriptors, one per triangle, which indicate how the mesh can
be rebuilt by attaching new triangles to previously reconstructed ones. The popularity of Edgebreaker lies in the fact
that all descriptors are symbols from the set {C,L,E,R,S}. A particular edge separating a previously processed
triangle from one that has not yet been processed is called the gate. The tip of the triangle, its left and right edges
and neoghbor triangles are defined with respect to that gate. At each step of the Edgebreaker compression and
decompression, the unprocessed triangle attached at the gate is processed and a new gate is selected. When the tip of
the new triangle corrsponds to a vertex that has not been previously visited, the triangle is associated with the

symbol C. Otherwise, only four cases are possible. If only the right neighbor of the new triangle has been
previously visited, the new triangle is labeled R and its left edge becomes the gate. The symmetric situation
corresponds to the L label. When both neighbors have not been been visited, the algorithm starts a recursion on the
right edge as gate and then resumes processing with the left edge as gate. When both neighobrs have been visited,
the recursion returns or the algorithm terminates.
No other parameter is needed. Because half of the descriptors are Cs, a trivial code (C=0, L=110, E=111, R=101,
S=100) guarantees 2 bits per triangle. A slightly more complex code guarantees 1.73 bits per triangle [18]. For large
meshes, entropy codes further reduce the storage to less than a bit per triangle [24]. The string of descriptors
produced by Edgebreaker is called the clers string. (No relation with any of the strings pulled by Claire.) An
efficient decompression algorithm for the clers sequence [24] interprets the symbols to build a simply connected
triangulated polygon, which represents the triangle-spanning tree. Then, it zips up the borders of that polygon by
matching pairs of its bounding edges in a bottom-up order with respect to the vertex-spanning-tree that is the dual of
the triangle-spanning-tree. An alternative, called Spirale Reversi [25], interprets the reversed clers string and builds
the triangle tree from the end. The Edgebreaker compression scheme has been extended to manifold meshes with
handles and holes [19], to triangulated boundaries of non-manifold solids [22], and to meshes that contain only
quadrilaterals or a combination of simply-connected polygonal faces with an arbitrary number of sides [23]. It was
also optimized for meshes with nearly regular connectivity [20]. Nevertheless, for sake of simplicity, in this paper,
we restrict our focus to manifold and orientable closed T-meshes.
Vertex coordinates may be compressed through various forms of vector quantization [2][3][26]. Most vertex
compression approaches exploit the coherence in vertex locations by using local or global predictors to encode
corrections instead of absolute vertex data. Both the encoder and the decoder use the same prediction formula. The
encoder transmits the difference between the predicted and the correct vertex data. It uses variable length codes for
the corrections. The better the prediction, the shorter the codes. The decoder receives the correction, decodes it and
adds it to the predicted data to obtain the correct information for the next vertex. Thus the prediction can only
exploit data that has been previously received and decoded. Most predictive schemes require only local connectivity
between the next vertex and its previously decoded neighbors. Some global predictors require having the
connectivity of the entire mesh. Thus it is imperative to optimize connectivity compression techniques that are
independent of vertex data.
Mesh simplification algorithms are used to reduce the number of polygons of the input model. Existing approaches
are mainly based on vertex [27], edge [7][28][29] or face [30][31] simplification primitives; roughly speaking, at
each step the algorithm chooses an element to be collapsed, depending either on some error metrics or on
characteristics such as the surface curvature, then the selected element is eliminated and the influenced region is
re-triangulated. Most of these simplification techniques are particular versions of vertex clustering. The simplest and
most efficient vertex clustering, [32][33] overlays a 3D grid on the model and collapses all vertices within each cell
of the grid to the single most important vertex within the cell.
Some simplification techniques provide a bound or an estimate on the error between the simplified and the original
models. Evaluating the difference between two 3D models is complex [36] and may be approached in different ways.
For example, in [7] energy functions have been used to measure the total squared distance, while in [31] the
distances of original vertices and the simplified surface are used. In this paper, we use the Hausdorff Distance to
evaluate the error. By definition, two surfaces are within Hausdorff distance r from each other if and only if each
point on one surface is within distance r from some point of the other one and vice-versa. The publicly available
Metro Tool [37], uses one-directional version of the Hausdorff distance for evaluating simplification algorithms.
The SwingWrapper approach presented here and the Normal Mesh encoding [6] are both lossy compression
techniques based on a retiling of the original mesh and on a constraint that restricts the location of each vertex to lie
on sampled points along a specific curve. In the case of the Normal Meshes, a crude mesh is constructed first and
then subdivided in an adaptive manner, restricting the location of the refinement vertices to lie on the intersection
between an estimated normal and the original surface. Situations where the normal does not intersect the original
surface or where the topology of the resulting mesh would disagree with the topology of the original one must be
detected and handled through local refinement. Recursive subdivision relies on a separate simplification process to
construct the original mesh with the correct topology. Furthermore, that original mesh and the regular subdivision
process limit the way in which the retiling can adapt to the local shape characteristics, and thus may result in less
effective compression ratios. For example, regular meshes may lead to sub-optimal triangulations for surfaces with
high curvature regions and saddle points, where vertices of valence different than 6 are more appropriate. By
contrast, SwingWrapper does has the flexibility to adapt to connectivity to better fit the local shape. It also does not

require the computation of a starting crude mesh. Thus it appears to be more effective than Normal Meshes for
encoding crude approximations or meshes with significant shape variations relative to the triangle size.
SwingWrapper does not, by itself support progressive transmission, but could be used effectively to build and
encode the crude meshes for subdivision surfaces and possibly for Normal Meshes.

SWING-WRAPPER
To understand how one can improve the compression of the geometry (vertex location), it is valuable to study what
happens during the decompression of a clers string. Whenever we meet a ‘C’ symbol, we must create a new vertex,
and thus need to obtain its three coordinates. Coordinates can be transmitted as absolute values or they can be
predicted by the decompression and adjusted by corrective-vectors that are received as part of the transmission; in
both cases we need to store three parameters for each vertex. Let us suppose that each C triangle is isosceles with the
gate as its base and its left and right edges having both length L. The position of the tip vertex of the triangle is
completely defined by the dihedral angle between the two triangles that are incident upon the gate. The decoder can
estimate that angle to be 180 degrees or a pre-computed value that depends on the average curvature of the model.
The decompression algorithm is notified be a single bit whether that estimate is sufficient to satisfy a predefined
error tolerance. If not, that is a single number is decoded and used to adjust the dihedral angle. Furthermore, such a
correction may be quantized with few bits without producing significant errors.
The desired length L of the sides of the C triangle may be chosen to equal the length of the gate (so as to form
equilateral triangles) or to be identical throughout the mesh. When a triangle with the desired length would violate
topological constraints or the desired Hausdorff distance limit, the decoder is notified to use a smaller value of L
(computed so as to produce a triangle with half the height of the desired one). Note that L, R, and S triangles may
produce edges, and thus gates, whose lengths vary, depending on the local curvature.
The scenario described above is the essence of our approach: Encode the connectivity using Edgebreaker and the
vertex locations using the dihedral angle scheme.

1.1 Resampling M
To provide a retiling M’ of a given original mesh M, we partition M into simply connected triangular-like regions,
called triangloids. The triangloids correspond to the triangles of M’. Each triangloid is bounded by three
piecewise.linear paths on M, and each path corresponds to an edge of M’. Note that some triangles of M may not fall
within a single triangloid. The algorithm subdivides them into smaller triangles that do. We describe in this section
the retiling process. The initial steps are illustrated in Figure 2.
Let L denote the provided step and p1 the first vertex of M’. The desired length, L, is either provided by the user or
estimated from the desired accuracy and a crude analysis of the curvature of the model. The initial vertex p1 is
typically chosen randomly, although it may be specified by the user (Fig. 2a).
p2, the second vertex of M’, is taken on the curve C where M intersects the sphere centered in p1 with radius L (Fig.
2b). For simplicity, we consider that M is connected. Thus, if C is empty, the desired distance L is considered too
large for the model. If C has more than one component, we consider only the portion of C that bounds the part of M
inside the sphere specified above. If C is non-manifold, it must be split into components.
Now, let e be the edge connecting p1 and p2 and let me be its middle point; the third point, p3, is on the two
intersections between the mesh and the circle centered in me having for radius 2/3L (the height of the equilateral
triangle with edge length L) and lying on the plane perpendicular to e (Fig. 2c). The fourth sampling point, p4, is the
other intersection. If the intersection is not made of two points, the provided sampling step L is reduced and the
process restarted.
The above operations locate three points (p1, p2 and p3) on M defining the first equilateral triangle, t’, of M’. We
refer to e as the base edge of t’. Now we must compute the three paths on M (Fig. 2d) that bound the corresponding
triangloid t, then we must mark its inner elements so as to ensure that they are not later associated with another
triangle of M’. Tracking a path may require the insertion of new vertices where the path crosses edges of M. Thus
edge and/or triangle splits are performed in order to build a coherent partitioning of M. The paths are
approximations of the corresponding geodesic shortest paths (GSP) and are computed as described in [38]. A second
equilateral triangle (Fig. 2f) has for vertices p1, p2 and p4. The two paths that bound the corresponding triangloid are
computed using the same approach as above.

P1
P2

P1

Sphere-mesh
intersection

(a) (b)

P1
P2 mp

P3
Intersecting
circle

(c)

P1
P2

P3 (d)

P4

Intersecting
circle

(e) (f)

Figure 2: Construction of the initial triangles of M’.

To build each one of the remaining triangles, we start with a gate edge bounded by two points, say pi and pj, and
locate a sample V on M. V must lie on the circle centered at the gate mid-point, having radius 2/3L , and lying on
the bisecting plane between pi and pj. The circle and M may have two or more intersections. We select the
intersection that is the furthest away from the tip of the previously decoded triangle bounded by the gate. If V is
close enough to a previously decoded vertex that is part of the border of the decoded triangles, we select the closest
of these, say W, and consider it to be the tip of the next triangle. If W is a neighbor of pi and pj (that is, they are
connected by edges of M’), then the triangle corresponds to the EdgeBreaker label E. If it is only a neighbor of one
of them, the new triangle is either R or L, depending whether W follows or precedes the gate (Fig. 3). Otherwise, we
have an S triangle (Fig. 4). We also perform a snap if it happens that the new triangoloid to be created intersects an
existing one.
If we perform the snap whenever the distance between V and W is less than L/2, we are guaranteed that no edge in
the final triangulation is shorter than L/2 or longer than 3L/2.

 Figure 3: Simple Snap (EdgeBreaker’s L or E) Figure 4: Complex Snap (EdgeBreaker’s S)

1.2 Topological validity
At each step of the sampling procedure described above, we must compute and mark the corresponding triangloid
(by tracing the GSP paths that bound it) and also verify that it is simply connected and disjoint from previously
encountered triangloids.
When a triangloid fails the test, we can adopt one of two strategies: shorten the length L for this particular triangle
(adaptive strategy) or restart with a smaller constant L for all triangles (uniform strategy).
Adaptive strategy: This adaptive scheme lets us start with a large L so that fairly flat regions can be split into larger
triangloids than regions of high curvature. However, it require a separate bitstream in the compression format to
identify those triangles for which the length must be adjusted and the amount of adjustment. For example one bit per
triangle could indicate whether the standard L is acceptable. If not, subsequent bits would indicate how much we

wish to reduce it.
Uniform strategy: This approach limits the magnitude of L for a given model and may result in an over-sampling of
flat regions. Nevertheless, it is simpler and produces uniformly sampled meshes, which may have advantages for
certain rendering and animation applications.
We have established experimentally that the uniform strategy produces excellent results for a large variety of models
commonly used to report results of simplification and compression algorithms. Thus the rest of this paper is focused
on uniform retiling.

1.3 Encoding
The described process can be used to generate a clers string representing the connectivity of the simplified
triangulation and, since we are guaranteed that ‘C’ triangles are isosceles and their height is 2/3L , we can use the
dihedral angle scheme for encoding the geometry. Summarizing, the compressed model is represented by the
coordinates of the first triangle vertices, a clers string, and a sequence of dihedral angles. The mesh connectivity can
be reconstructed using the Wrap&Zip algorithm [24]. The location of the first three vertices is explicit, while the
others can be computed starting from the already reconstructed mesh and the dihedral angle information; the used
sampling step does not need to be encoded because it is the distance between two of the three original vertices.

The geometry is encoded by quantizing each dihedral angle with a fixed number of bits. Using 8 bits guarantees a
precision of 360/256 ≅ 1.41 degrees (corresponding to a Hausdorff distance of () 2/341.1sin L). Since angles are
quantized, vertices of the approximating mesh do not lie exactly on the original triangulation. To avoid error
propagation during the decompression, the re-meshing must compute each new vertex starting from an
approximating adjacent triangle, whose vertices do not necessarily lie on the original mesh. Thus the compression
must simulate the work of the decompressor using only previously decoded information.

1.4 Results
The whole method guarantees that the re-mesh with V vertices, T triangles and H handles can always be encoded
with 8V + 1.8T + 2Hlog(T) bits. For simplicity, we assume that the number of handles, H, is negligeable with respect
to V, and thus that T=2V.
For large meshes, entropy encoding further reduces storage, bringing the connectivity cost down to about 1T bits and
the geometry cost to about 6V bits (or equivalently 3T bits. Thus the total size is about 4T bits for large meshes,
while is guaranteed not to exceed 5.8T bits for meshes witout handles.

We have developed a prototype to test the described method. The input is the original mesh. The first step of the
SwingWraper system is to compute the radius of the smallest bounding ball and to let the user express the desired
edge length L as a ratio of this radius. Then, SwingWrapper attempts to compute a retiling and either reports failure,
in which case the user may try a smaller L, or produce a valid retiling and report the largest error measured as the
Hausdorff distance between each triangle of M’ and the corresponding triangloid.
We have found that many of the original triangle meshes that have been used to demonstrate simplification and
compression results in the literature may be retiled with our approach down to 10 times fewer triangles without
exceeding an error of 1% of the radius of the smallest ball that contains the model. Thus the resulting compression
yields a guaranteed storage of only 0.58 bits per triangle of the original model, and an expected 0.4 bits per
triangle for large meshes.
To report our results in this paper, we have used models downloaded from
http://www.cyberware.com/samples/index.html. They are shown in Table 1 and in figs. 5, 6 and 7, where the Santa
Claus model has been compressed within two different error tolerances; notice that an error of 0.8% of the bounding
ball results in a model that is visually indistinguishable from the original one, while as this error increases the
resulting model becomes smoother.
We tested our prototype on a PentiumIII 450 equipped with 512M of ram and running Linux and, excluding
input/output operations, statistics on running time reported an average of 1.2•10-4 seconds per triangle of the original
mesh M (over 8000 triangles per second).

http://www.cyberware.com/samples/index.html

CONCLUSIONS
In this paper, we have presented a new method for compressing triangle meshes with a controlled loss of
information. We exploited both simplification and compression techniques in order to obtain a compact encoding.
The method described here is suitable for improvements in the encoding scheme; for example, we found that an
average of 85% of the vertices of the resulting model have exactly six incident triangles, so valence driven encoding
schemes may give further compression of the connectivity.

Figure 5: Original mesh: 151560 triangles, vrml file size: 4774373 bytes

Figure 6: Re-mesh with 0.8% error with 23183 triangles built in 16 seconds and encoded with 12329 bytes;

compression rate: 0.65 bits/T.

Figure 7: Re-mesh with 1.9% error with 6474 triangles built in 15 seconds and encoded with 3573 bytes;
compression rate: 0.189 bits/T.
.

Original: 274K
triangles

WRL file: 8.7
Mbytes

ε = 0.5%: 56K
triangles

encoded with
29958 bytes

ε = 1.1%: 24K triangles

encoded with 12906
bytes

ε = 4.3%: 7K triangles

encoded with 4116 bytes

Original: 268K
triangles

WRL file: 8.5
Mbytes

ε = 0.4%: 62K
triangles

encoded with
37072 bytes

ε = 1.6%: 18K triangles

encoded with 10314
bytes

ε = 4.1%: 9K triangles

encoded with 5624 bytes

Original: 375K
triangles

WRL file: 11.9
Mbytes

ε = 2.7%: 18K
triangles

encoded with 9312
bytes

Original: 80K triangles

WRL file: 2.54 Mbytes

ε = 1.1%: 10K triangles

encoded with 6424 bytes

Table 1: Retilings produced with SwingWrapper.

REFERENCES

[1] W. Tutte, “A census of planar triangulations”, Canadian Journal of Mathematics, pp.21-38, 1962.
[2] M. Deering. Geometry compression. In Computer Graphics (SIGGRAPH '95 Proceedings), pp. 13-20, 1995.
[3] G. Taubin and J. Rossignac, "Geometric Compression through Topological Surgery", ACM Transactions on Graphics, 17(2),

84-115, April 1998.
[4] C. Touma and C. Gotsman, “Triangle Mesh Compression”, Proceedings Graphics Interface 98, pp. 26-34, 1998.
[5] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery and W. Stuetzle, Multiresolution Analysis of Arbitrary Meshes, Proc.

ACM SIGGRAPH'95, pp. 173-182, Aug. 1995.
[6] I. Guskov, K. Vidimce, W. Sweldens, P. Schroder, Normal Meshes, Proc. SIGGRAPH, pp. 95-102, 2000.
[7] H. Hoppe, “Progressive Meshes”, Proc. ACM Siggraph’96, pp. 99-108, August 1996.
[8] C.L Bajaj and V.Pascucci and G.Zhuang. “Progressive Compression and Transmission of Arbitrary Triangular Meshes”, IEEE

Visualization '99, pp. 307-316, October 1999.
[9] D. Cohen-Or, D. Levin and O. Remez, “Progressive Compression of Arbitrary Triangular Meshes”. In Proc. of Visualization 99,

pp. 67-72, October 1999.
[10] A. Khodakovsky, P. Schroder and W. Sweldens, “Progressive Geometry Compression”, Proc. of SIGGRAPH 2000, pp. 271-278,

July 2000.
[11] P. Alliez and M. Desbrun, “Progressive Encoding for Lossless Transmission of 3D Meshes”, Proc. of SIGGRAPH 2001, pp.,

August 2001.
[12] C.L. Bajaj and V. Pascucci and G. Zhuang, “Single Resolution Compression of Arbitrary Triangular Meshes with Properties”,

IEEE Data Compression Conference, 1999.
[13] M. Isenburg and J. Snoeyink, “Face-Fixer: Compressing Polygon Meshes with Properties”, Proc. of SIGGRAPH 2000, pages

263-270, July 2000.
[14] M. Chow, “Optimized Geometry Compression for Real-time Rendering”, In Proc. of the IEEE Visualization '97, pp. 346-354,

November 1997.
[15] M.H. Gross, L. Lippert and O.G.Staadt, “Compression methods for Visualization”, Future Generation Computer Systems, Vol.

15, No. 1, pp.11-19, 1999.
[16] Z. Karni and C. Gotsman, “Spectral Coding of Mesh Geometry”, Proc. of SIGGRAPH 2000, pp. 279-286, July 2000.
[17] S. Gumhold and W. Strasser, “Real Time Compression of Triangle Mesh Connectivity”, Proc. ACM Siggraph, pp. 133-140, July

1998.
[18] D. King and J. Rossignac, “Guaranteed 3.67V bit encoding of planar triangle graphs”, 11th Canadian Conference on

Computational Geometry (CCCG'’99), pp. 146-149, Vancouver, CA, August 15-18, 1999.
[19] J. Rossignac, "Edgebreaker: Connectivity compression for triangle meshes", IEEE Transactions on Visualization and Computer

Graphics, 5(1), 47-61, Jan-Mar 1999.
[20] A. Szymczak, D. King, J. Rossignac, “An Edgebreaker-based Efficient Compression Scheme for Connectivity of Regular

Meshes”, Journal of Computational Geometry: Theory and Applications, 2000.
[21] P.Alliez and M.Desbrun, “Valence-Driven Connectivity Encoding for 3D Meshes”, Proc. of Eurographics '2001.
[22] J. Rossignac and D. Cardoze, “Matchmaker: Manifold Breps for non-manifold r-sets”, Proceedings of the ACM Symposium on

Solid Modeling, pp. 31-41, June 1999.
[23] D. King and J. Rossignac, "Connectivity Compression for Irregular Quadrilateral Meshes" Research Report GIT-GVU- 99 -29,

Dec 1999.
[24] J. Rossignac and A. Szymczak, "Wrap&Zip decompression of the connectivity of triangle meshes compressed with

Edgebreaker", Computational Geometry, Theory and Applications, 14(1/3), 119-135, November 1999.
[25] M. Isenburg and J. Snoeyink, “Spirale Reversi: Reverse decoding of the Edgebreaker encoding”, Tech. Report TR-99-08,

Computer Science, UBC, 1999.
[26] M. Garland and P. Heckbert. Simplifying Surfaces with Color and Texture using Quadratic Error Metric. Proceedings of IEEE

Visualization, pp. 287-295, 1998.
[27] W. Schroeder, J. Zarge and W.E. Lorensen, “Decimation of triangle meshes”, Proc. ACM Siggraph 92, pp. 65-70, July 1992.
[28] M. E. Algorri and F. Schmitt, “Mesh simplification”, Proc. Eurographics 96, 15(3), pp. 78-86, 1996.
[29] R. Ronfard and J. Rossignac, “Full range approximation of triangulated polyhedra”, Proc. Eurographics 96, 15(3), pp. 67-76,

1996.
[30] P. Hinker and C. Hansen, “Geometric Optimization”, IEEE Visualization ’93 Proc., pp 189-195, October, 1993.
[31] A.D. Kalvin and R.H. Taylor, “Superfaces: Polygonal mesh simplification with bounded error”. IEEE Computer Graphics and

Applications, 16(3), pp. 64-67,1996.
[32] J. Rossignac and P. Borrel, “Multi-resolution 3D approximations for rendering complex scenes”, Geometric Modeling in

Computer Graphics, Springer Verlag, Berlin, pp. 445-465, 1993.
[33] K-L. Low and T.S.Tan, “Model Simplification using vertex clustering”, Proc. Symp. Interactive 3D Graphics, ACM Press, NY,

pp. 75-82, 1997.
[34] G. Turk, “Re-tiling polygonal surfaces”, Proc. ACM Siggraph 92, pp. 55-64, July 1992.
[35] M. Attene, S. Biasotti and M. Spagnuolo, “Re-meshing techniques for topological analysis”, Proc. Shape Modeling International,

pp. 142-151, 2001.
[36] A. Khodakovsky, P. Schroder, W. Sweldens, Progressive Geometry Compression, Proc. ACM SIGGRAPH, pp. 271-278, 2000.
[37] P. Cignoni, C. Rocchini and R. Scopigno, “Metro: measuring error on simplified surfaces”, Proc. Eurographics ’98, vol. 17(2),

pp 167-174, June 1998.
[38] K. Polthier, M. Schmies, “Geodesic Flow on Polyhedral Surfaces”, Procs. of Eurographics Workshop on Scientific Visualization,

Vienna 1999.

