431,743 research outputs found

    Transfer Learning for Improving Model Predictions in Highly Configurable Software

    Full text link
    Modern software systems are built to be used in dynamic environments using configuration capabilities to adapt to changes and external uncertainties. In a self-adaptation context, we are often interested in reasoning about the performance of the systems under different configurations. Usually, we learn a black-box model based on real measurements to predict the performance of the system given a specific configuration. However, as modern systems become more complex, there are many configuration parameters that may interact and we end up learning an exponentially large configuration space. Naturally, this does not scale when relying on real measurements in the actual changing environment. We propose a different solution: Instead of taking the measurements from the real system, we learn the model using samples from other sources, such as simulators that approximate performance of the real system at low cost. We define a cost model that transform the traditional view of model learning into a multi-objective problem that not only takes into account model accuracy but also measurements effort as well. We evaluate our cost-aware transfer learning solution using real-world configurable software including (i) a robotic system, (ii) 3 different stream processing applications, and (iii) a NoSQL database system. The experimental results demonstrate that our approach can achieve (a) a high prediction accuracy, as well as (b) a high model reliability.Comment: To be published in the proceedings of the 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS'17

    Options for Human Capital Acquisition

    Get PDF
    An \u27options\u27 view of human capital acquisition explains value creation through timedeferred, sequential, path-dependent investment choices and addresses gaps in the resourcebased theory explanation of the relationship between human resources and competitive advantage. Firms will invest in options for human capital, using alternative employment arrangements like temporary/contractual/part-time workers and internships, or by outsourcing the work, when uncertainty associated with human capital is high and investments in human capital are largely irreversible. We discuss various options for skills and employees, two interrelated components of human capital. These are flexibility options, options to wait or defer, options to abandon, learning options, and switching options. The opportunity cost of not having options is quantifiable, which makes the real options approach valuable for strategic HRM decisions

    Barriers to participation in education and training

    Get PDF
    This study explores the barriers and constraints young people currently face when deciding what to do at the end of their compulsory schooling in Year 11. The study conducted by the NFER, working in partnership with Triangle and QA Research, included a survey of 2029 young people who completed Year 11 in either 2008 or 2009 conducted between August and October 2009. This survey was supplemented by interviews with booster samples of 519 young people across specific sub-groups and 102 parent interviews

    The Green Choice: Learning and Influencing Human Decisions on Shared Roads

    Full text link
    Autonomous vehicles have the potential to increase the capacity of roads via platooning, even when human drivers and autonomous vehicles share roads. However, when users of a road network choose their routes selfishly, the resulting traffic configuration may be very inefficient. Because of this, we consider how to influence human decisions so as to decrease congestion on these roads. We consider a network of parallel roads with two modes of transportation: (i) human drivers who will choose the quickest route available to them, and (ii) ride hailing service which provides an array of autonomous vehicle ride options, each with different prices, to users. In this work, we seek to design these prices so that when autonomous service users choose from these options and human drivers selfishly choose their resulting routes, road usage is maximized and transit delay is minimized. To do so, we formalize a model of how autonomous service users make choices between routes with different price/delay values. Developing a preference-based algorithm to learn the preferences of the users, and using a vehicle flow model related to the Fundamental Diagram of Traffic, we formulate a planning optimization to maximize a social objective and demonstrate the benefit of the proposed routing and learning scheme.Comment: Submitted to CDC 201

    Project Exploration: 10-year Retrospective Program Evaluation

    Get PDF
    Assesses the impact of a program giving low-income students of color hands-on science experience on science capacity, youth development, and engagement in communities of practice. Examines practices that support science learning by underrepresented youth

    Games for a new climate: experiencing the complexity of future risks

    Full text link
    This repository item contains a single issue of the Pardee Center Task Force Reports, a publication series that began publishing in 2009 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future.This report is a product of the Pardee Center Task Force on Games for a New Climate, which met at Pardee House at Boston University in March 2012. The 12-member Task Force was convened on behalf of the Pardee Center by Visiting Research Fellow Pablo Suarez in collaboration with the Red Cross/Red Crescent Climate Centre to “explore the potential of participatory, game-based processes for accelerating learning, fostering dialogue, and promoting action through real-world decisions affecting the longer-range future, with an emphasis on humanitarian and development work, particularly involving climate risk management.” Compiled and edited by Janot Mendler de Suarez, Pablo Suarez and Carina Bachofen, the report includes contributions from all of the Task Force members and provides a detailed exploration of the current and potential ways in which games can be used to help a variety of stakeholders – including subsistence farmers, humanitarian workers, scientists, policymakers, and donors – to both understand and experience the difficulty and risks involved related to decision-making in a complex and uncertain future. The dozen Task Force experts who contributed to the report represent academic institutions, humanitarian organization, other non-governmental organizations, and game design firms with backgrounds ranging from climate modeling and anthropology to community-level disaster management and national and global policymaking as well as game design.Red Cross/Red Crescent Climate Centr

    Automata guided hierarchical reinforcement learning for zero-shot skill composition

    Full text link
    An obstacle that prevents the wide adoption of (deep) reinforcement learning (RL) in control systems is its need for a large amount of interactions with the environment in order to master a skill. The learned skill usually generalizes poorly across domains and re-training is often necessary when presented with a new task. We present a framework that combines methods in formal methods with hierarchical reinforcement learning (HRL). The set of techniques we provide allows for convenient specification of tasks with complex logic, learn hierarchical policies (meta-controller and low-level controllers) with well-defined intrinsic rewards using any RL methods and is able to construct new skills from existing ones without additional learning. We evaluate the proposed methods in a simple grid world simulation as well as simulation on a Baxter robot
    • …
    corecore