2,925 research outputs found

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Behavior Trees in Robotics and AI: An Introduction

    Full text link
    A Behavior Tree (BT) is a way to structure the switching between different tasks in an autonomous agent, such as a robot or a virtual entity in a computer game. BTs are a very efficient way of creating complex systems that are both modular and reactive. These properties are crucial in many applications, which has led to the spread of BT from computer game programming to many branches of AI and Robotics. In this book, we will first give an introduction to BTs, then we describe how BTs relate to, and in many cases generalize, earlier switching structures. These ideas are then used as a foundation for a set of efficient and easy to use design principles. Properties such as safety, robustness, and efficiency are important for an autonomous system, and we describe a set of tools for formally analyzing these using a state space description of BTs. With the new analysis tools, we can formalize the descriptions of how BTs generalize earlier approaches. We also show the use of BTs in automated planning and machine learning. Finally, we describe an extended set of tools to capture the behavior of Stochastic BTs, where the outcomes of actions are described by probabilities. These tools enable the computation of both success probabilities and time to completion

    Synthesis of Switching Protocols from Temporal Logic Specifications

    Get PDF
    We propose formal means for synthesizing switching protocols that determine the sequence in which the modes of a switched system are activated to satisfy certain high-level specifications in linear temporal logic. The synthesized protocols are robust against exogenous disturbances on the continuous dynamics. Two types of finite transition systems, namely under- and over-approximations, that abstract the behavior of the underlying continuous dynamics are defined. In particular, we show that the discrete synthesis problem for an under-approximation can be formulated as a model checking problem, whereas that for an over-approximation can be transformed into a two-player game. Both of these formulations are amenable to efficient, off-the-shelf software tools. By construction, existence of a discrete switching strategy for the discrete synthesis problem guarantees the existence of a continuous switching protocol for the continuous synthesis problem, which can be implemented at the continuous level to ensure the correctness of the nonlinear switched system. Moreover, the proposed framework can be straightforwardly extended to accommodate specifications that require reacting to possibly adversarial external events. Finally, these results are illustrated using three examples from different application domains

    Decomposing GR(1) Games with Singleton Liveness Guarantees for Efficient Synthesis

    Get PDF
    Temporal logic based synthesis approaches are often used to find trajectories that are correct-by-construction for tasks in systems with complex behavior. Some examples of such tasks include synchronization for multi-agent hybrid systems, reactive motion planning for robots. However, the scalability of such approaches is of concern and at times a bottleneck when transitioning from theory to practice. In this paper, we identify a class of problems in the GR(1) fragment of linear-time temporal logic (LTL) where the synthesis problem allows for a decomposition that enables easy parallelization. This decomposition also reduces the alternation depth, resulting in more efficient synthesis. A multi-agent robot gridworld example with coordination tasks is presented to demonstrate the application of the developed ideas and also to perform empirical analysis for benchmarking the decomposition-based synthesis approach

    Correct-by-synthesis reinforcement learning with temporal logic constraints

    Full text link
    We consider a problem on the synthesis of reactive controllers that optimize some a priori unknown performance criterion while interacting with an uncontrolled environment such that the system satisfies a given temporal logic specification. We decouple the problem into two subproblems. First, we extract a (maximally) permissive strategy for the system, which encodes multiple (possibly all) ways in which the system can react to the adversarial environment and satisfy the specifications. Then, we quantify the a priori unknown performance criterion as a (still unknown) reward function and compute an optimal strategy for the system within the operating envelope allowed by the permissive strategy by using the so-called maximin-Q learning algorithm. We establish both correctness (with respect to the temporal logic specifications) and optimality (with respect to the a priori unknown performance criterion) of this two-step technique for a fragment of temporal logic specifications. For specifications beyond this fragment, correctness can still be preserved, but the learned strategy may be sub-optimal. We present an algorithm to the overall problem, and demonstrate its use and computational requirements on a set of robot motion planning examples.Comment: 8 pages, 3 figures, 2 tables, submitted to IROS 201

    Learning robot policies using a high-level abstraction persona-behaviour simulator

    Get PDF
    2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksCollecting data in Human-Robot Interaction for training learning agents might be a hard task to accomplish. This is especially true when the target users are older adults with dementia since this usually requires hours of interactions and puts quite a lot of workload on the user. This paper addresses the problem of importing the Personas technique from HRI to create fictional patients’ profiles. We propose a Persona-Behaviour Simulator tool that provides, with high-level abstraction, user’s actions during an HRI task, and we apply it to cognitive training exercises for older adults with dementia. It consists of a Persona Definition that characterizes a patient along four dimensions and a Task Engine that provides information regarding the task complexity. We build a simulated environment where the high-level user’s actions are provided by the simulator and the robot initial policy is learned using a Q-learning algorithm. The results show that the current simulator provides a reasonable initial policy for a defined Persona profile. Moreover, the learned robot assistance has proved to be robust to potential changes in the user’s behaviour. In this way, we can speed up the fine-tuning of the rough policy during the real interactions to tailor the assistance to the given user. We believe the presented approach can be easily extended to account for other types of HRI tasks; for example, when input data is required to train a learning algorithm, but data collection is very expensive or unfeasible. We advocate that simulation is a convenient tool in these cases.Peer ReviewedPostprint (author's final draft

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks
    • 

    corecore