2,465 research outputs found

    Illustration of Modern Wind Turbine Ancillary Services

    Get PDF
    Increasing levels of wind power penetration in modern power systems has set intensively high standards with respect to wind turbine technology during the last years. Security issues have become rather critical and operation of wind farms as conventional power plants is becoming a necessity as wind turbines replace conventional units on the production side. This article includes a review of the basic control issues regarding the capability of the Doubly Fed Induction Generator (DFIG) wind turbine configuration to fulfill the basic technical requirements set by the system operators and contribute to power system security. An overview of ancillary services provided by wind turbine technology nowadays is provided, i.e., fault ride-through capability, reactive power supply and frequency-active power control

    Enhancement of Fault Ride-Through Capability during Symmetrical Fault of the DFIG Wind Turbine using Alternative Resistive-type SFCL

    Get PDF
    In this paper, the resistive-type superconducting fault current limiter (RT-SFCL) with doubly-fed induction gen¬erator (DFIG) based wind turbine has been proposed to suppress the steady-state and transient fault current at stator side to improve the fault ride through (FRT) capability of the system. This fault current limiter utilizing the superconductor dc coil so there is not any power loss during both normal as well as faulty operation of system. The analytical analysis has been also presented. The simulation results of a 0.9 MW/0.69 kV, the DFIG-based wind turbine are obtained with and without proposed RT-SFCL using PSCAD/EMTDC software. Finally, it observed that the voltage sag at the generator terminal and consumption of reactive power from the grid has been reduced during symmetrical faul

    Power System Stability Enhancement and Improvement of LVRT Capability of a DFIG Based Wind Power System by Using SMES and SFCL

    Get PDF
    This paper proposes a exhaustive study about the performance analysis of Doubly Fed Induction (DFIG) under abnormal condition. Now a days, majority of power network countenance the problem of over current and grid connectivity issues. SFCL (Superconducting Fault Current Limiter), which have the competence to limit the fault current and protect the equipments from damage. SMES (Superconducting Magnetic Energy Storage) is mainly used to compensate both real and reactive power variations, thus power quality can be enhanced. Co-ordinated operation of SFCL - SMES thus used to enhance the power system stability and improve the LVRT (Low Voltage Ride Through) capability of wind power generation systems. LVRT capability of wind turbine is refers to the ability of wind power system to conquer the voltage variations if there is any unwanted conditions. Here DFIG based wind turbine plant is used for consideration, because it will provide smoothened power output nearly double than a conventional generator. And it have more simple and rugged construction also.   Design of DFIG based wind power generation systems under fault condition with the help of SMES and SFCL is analysed   by means of MATLAB/SIMULINK block set.DOI:http://dx.doi.org/10.11591/ijece.v3i5.338

    Power electronics options for large wind farm integration : VSC-based HVDC transmission

    Get PDF
    This paper describes the use of voltage source converter based HVDC transmission (VSC transmission) system for grid integration of large wind farms over long distance. The wind farms can be based on either doubly-fed induction generator (DFIG) or fixed speed induction generator (FSIG). The paper describes the operation principles and control strategies of the proposed system. Automatic power balancing during network AC fault is achieved without communication between the two converters. PSCAD/EMTDC simulations are presented to demonstrate the robust performance and to validate the proposed system during various operating conditions such as variations of generation and AC fault conditions. The proposed VSC transmission system has technical and economic advantages over a conventional AC connection for integrating large wind farms over long distanc

    Small-Signal Modelling and Analysis of Doubly-Fed Induction Generators in Wind Power Applications

    Get PDF
    The worldwide demand for more diverse and greener energy supply has had a significant impact on the development of wind energy in the last decades. From 2 GW in 1990, the global installed capacity has now reached about 100 GW and is estimated to grow to 1000 GW by 2025. As wind power penetration increases, it is important to investigate its effect on the power system. Among the various technologies available for wind energy conversion, the doubly-fed induction generator (DFIG) is one of the preferred solutions because it offers the advantages of reduced mechanical stress and optimised power capture thanks to variable speed operation. This work presents the small-signal modelling and analysis of the DFIG for power system stability studies. This thesis starts by reviewing the mathematical models of wind turbines with DFIG convenient for power system studies. Different approaches proposed in the literature for the modelling of the turbine, drive-train, generator, rotor converter and external power system are discussed. It is shown that the flexibility of the drive train should be represented by a two-mass model in the presence of a gearbox. In the analysis part, the steady-state behaviour of the DFIG is examined. Comparison is made with the conventional synchronous generators (SG) and squirrel-cage induction generators to highlight the differences between the machines. The initialisation of the DFIG dynamic variables and other operating quantities is then discussed. Various methods are briefly reviewed and a step-by-step procedure is suggested to avoid the iterative computations in initial condition mentioned in the literature. The dynamical behaviour of the DFIG is studied with eigenvalue analysis. Modal analysis is performed for both open-loop and closed-loop situations. The effect of parameters and operating point variations on small signal stability is observed. For the open-loop DFIG, conditions on machine parameters are obtained to ensure stability of the system. For the closed-loop DFIG, it is shown that the generator electrical transients may be neglected once the converter controls are properly tuned. A tuning procedure is proposed and conditions on proportional gains are obtained for stable electrical dynamics. Finally, small-signal analysis of a multi-machine system with both SG and DFIG is performed. It is shown that there is no common mode to the two types of generators. The result confirms that the DFIG does not introduce negative damping to the system, however it is also shown that the overall effect of the DFIG on the power system stability depends on several structural factors and a general statement as to whether it improves or detriorates the oscillatory stability of a system can not be made

    Effects of POD control on a DFIG wind turbine structural system

    Get PDF
    This paper investigates the effects power oscillation damping (POD) controller could have on a wind turbine structural system. Most of the published work in this area has been done using relatively simple aerodynamic and structural models of a wind turbine which cannot be used to investigate the detailed interactions between electrical and mechanical components of the wind turbine. Therefore, a detailed model that combines electrical, structural and aerodynamic characteristics of a grid-connected Doubly Fed Induction Generator (DFIG) based wind turbine has been developed by adapting the NREL (National Renewable Energy Laboratory) 5MW wind turbine model within FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code. This detailed model is used to evaluate the effects of POD controller on the wind turbine system. The results appear to indicate that the effects of POD control on the WT structural system are comparable or less significant as those caused by wind speed variations. Furthermore, the results also reveal that the effects of a transient three-phase short circuit fault on the WT structural system are much larger than those caused by the POD controller

    DFIG versus PMSG for marine current turbine applications

    Get PDF
    Emerging technologies for marine current turbine are mainly relevant to works that have been carried out on wind turbines and ship propellers. It is then obvious that many electric generator topologies could be used for marine current turbines. As in the wind turbine context, doubly-fed induction generators and permanent magnet generators seems to be attractive solutions to be used to harness the tidal current energy. In this paper, a comparative study between these two generators type is presented and fully analyzed in terms of generated power, maintenance and operation constraints. This comparison is done for the Raz de Sein site (Brittany, France) using a multi physics modeling simulation tool. This tool integrates, in a modular environment, the resource model, the turbine hydrodynamic model and the generators models

    Modeling and Control of a Marine Current Turbine Driven Doubly-Fed Induction Generator

    Get PDF
    This paper deals with the modeling and the control of a variable speed DFIG-based marine current turbine with and without tidal current speed sensor. The proposed MPPT control strategy relies on the resource and the marine turbine models that were validated by experimental data. The sensitivity of the proposed control strategy is analyzed regarding the swell effect as it is considered as the most disturbing one for the resource model. Tidal current data from the Raz de Sein (Brittany, France) are used to run simulations of a 7.5-kW prototype over various flow regimes. Simulation results are presented and fully analyzedThis work has been funded by Brest Métropole Océan

    A simple maximum power point tracking based control strategy applied to a variable speed squirrel cage induction generator

    Get PDF
    This paper presents a comprehensive modelling and control study of a variable speed wind energy conversion system based on a squirrel-cage induction generator (SCIG). The mathematical model of the SCIG is derived in Park frame along with the indirect field oriented control (IFOC) scheme based on a proportional and integral speed controller. A simple maximum power point tracking strategy is used to determine the optimal speed under variable wind speed conditions which is then used as the reference in the IFOC scheme. Power flow between the supply and the inverter is regulated via simultaneous control of the active and reactive currents of the grid and the DC link voltage. The simulation results show that the proposed control technique is able to maximise the energy extracted from the wind during the simulation scenarios considered. The results also demonstrate good transient response characteristics in the decoupled real and reactive powers.Peer reviewedFinal Accepted Versio
    corecore