43 research outputs found

    Reactive Atom Plasma (RAP) figuring machine for meter class optical surfaces

    Get PDF
    A new surface figuring machine called Helios 1200 is presented in this paper. It is designed for the figuring of meter sized optical surfaces with form accuracy correction capability better than 20 nm rms within a reduced number of iterations. Unlike other large figuring facilities using energy beams, Helios 1200 operates a plasma torch at atmospheric pressure, offers a high material removal rate, and a relatively low running cost. This facility is ideal to process large optical components, lightweight optics, silicon based and difficult to machine materials, aspheric, and free form surfaces. Also, the surfaces processed by the reactive atom plasma (RAP) are easy to fine polish through hand conventional sub-aperture polishing techniques. These unique combined features lead to a new capability for the fabrication of optical components opening up novel design possibilities for optical engineers. The key technical features of this large RAP machine are fast figuring capabilities, non-contact material removal tool, the use of a near Gaussian footprint energy beam, and a proven tool path strategy for the management of the heat transfer. Helios 1200 complies with the European machine safety standard and can be used with different types of reactive gases using either fluorine or chlorine compounds. In this paper, first the need for large optical component is discussed. Then, the RAP facility is described: radio frequency R.F generator, plasma torch, and 3 axis computer numerically controlled motion system. Both the machine design and the performance of the RAP tool is assessed under specific production conditions and in the context of meter class mirror and lens fabrication

    Fast figuring of large optics by reactive atom plasma

    Get PDF
    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to& lambda;/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours

    Advances in optical surface figuring by reactive atom plasma (RAP)

    Get PDF
    In this thesis, the research and development of a novel rapid figuring procedure for large ultra-precise optics by Reactive Atom Plasma technology is reported. The hypothesis proved in this research is that a metre scale surface with a form accuracy of ~1 μm PV can be figure corrected to 20 – 30 nm RMS in ten hours. This reduces the processing time by a factor ten with respect to state-of-the-art techniques like Ion Beam Figuring. The need for large scale ultra-precise optics has seen enormous growth in the last decade due to large scale international research programmes. A bottleneck in production is seen in the final figure correction stage. State-of-the-art processes capable of compliance with requisites of form accuracy of one part in 108 (CNC polishing, Magneto-Rheological Finishing and Ion Beam Figuring) have failed to meet the time and cost frame targets of the new optics market. Reactive Atom Plasma (RAP) is a means of plasma chemical etching that makes use of a Radio Frequency Inductively Coupled Plasma (ICP) torch operating at atmospheric pressure. It constitutes an ideal figuring alternative, combining the advantages of a non-contact tool with very high material removal rates and nanometre level repeatability. Despite the rapid figuring potential of this process, research preceding the work presented in this manuscript had made little progress towards design and implementation of a procedure for metre-class optics. The experimental work performed in this PhD project was conducted on Helios 1200, a unique large-scale RAP figuring facility at Cranfield University. Characterisation experiments were carried out on ULE and fused silica surfaces to determine optimum process parameters. Here, the influence of power, surface distance, tool speed and surface temperature was investigated. Subsequently, raster-scanning tests were performed to build an understanding on spaced multiple passes ... [cont.].SAS Prize winne

    Investigation of power dissipation in a collimated energy beam

    Get PDF
    To satisfy the worldwide demand for large ultra-precision optical surfaces, a fast process chain - grinding, polishing and plasma figuring- has been established by the Precision Engineering Institute at Cranfield University. The focus of Cranfield Plasma Figuring team is the creation of next generation of highly collimated energy beam for plasma figuring. Currently, plasma figuring has the capability to shorten processing duration for the correction of metre-scale optical surfaces. High form accuracy can be achieved (e.g. 2.5 hours and 31 nm RMS for 400mm diameter surface). However, it is known that Mid Spatial Frequency (MSF) surface errors are induced when the plasma figuring process is carried out. The work discussed in this paper deals with the characterisation of highly collimated plasma jets delivered by the Inductively Coupled Plasma (ICP) torches. Also a computational fluid dynamics (CFD) model is introduced. This model is used to assess the behaviour of the plasma jet within the best known processing condition. Finally temperature measurement experiments were performed to determine the energy dissipated values that characterise best the ICP torch coil and its De-Laval nozzle

    Analysis of De-Laval nozzle designs employed for plasma figuring of surfaces

    Get PDF
    Plasma figuring is a dwell time fabrication process that uses a locally delivered chemical reaction through means of an inductively coupled plasma (ICP) torch to correct surface figure errors. This paper presents two investigations for a high temperature jet (5000 K) that is used in the context of the plasma figuring process. Firstly, an investigation focuses on the aerodynamic properties of this jet that streamed through the plasma torch De-Laval nozzle and impinged optical surfaces. Secondly, the work highlights quantitatively the effects of changing the distance between the processed surface and nozzle outlet. In both investigations, results of numerical models and experiments were correlated. The authors’ modelling approach is based on computational fluid dynamics (CFD). The model is specifically created for this harsh environment. Designated areas of interests in the model domain are the nozzle convergent-divergent and the impinged substrate regions. Strong correlations are highlighted between the gas flow velocity near the surface and material removal footprint profiles. In conclusion, the CFD model supports the optimization of an ICP torch design to fulfil the demand for the correction of ultra-precision surfaces

    Design of a motorised plasma delivery system for ultra-precision large optical fabrication

    Get PDF
    A unique plasma figuring (PF) process was created and demonstrated at Cranfield University for manufacturing extremely large telescopes. The atmospheric pressure processing is faster and more cost-effective than other finishing processes; thus, providing an important alternative for large optical surfaces. The industrial scale manufacturing of thousands of ultra-precision metre-scale optics requires a robust PF machine: this requirement is achieved by making the plasma delivery system (PDS) performance repeatable. In this study, a dedicated PDS for large optical manufacturing was proposed to meet the industrial requirement. The PDS is based on an L-type radiofrequency (RF) network, a power supply, and an inductively coupled plasma torch. However, the complexities of these technologies require an in depth understanding of the integrated components that from the PDS. A smart control system for the modified PDS was created. This novel control system aims to make the characterization process deterministic: by automating the tuning of critical electrical components in the RF network, which is achieved by the use of in-line metrology. This paper describes the main design aspects. The PDS was tested with a good correlation between capacitance and RF frequencies. The robust PDS design enables a stable discharge of plasma with a low deviation of RF signals during the total 15 hours' te

    Creation of a control system for plasma delivery to increase automation and stability.

    Get PDF
    Surface figuring of extremely large telescopes (ELT) addresses a highly challenging manufacture issue for the field of ultra precision. [1] High form accuracy and rapid fabrication are needed for ELT primary mirror surface figuring. In Cranfield University, Plasma Figuring (PF) [2] is used as a main method to correct ELT mirror surface figure error. The non-contact based material removal process brings PF to a high level of accuracy (under 1nm RMS level). Some other great features of PF are the capability to work at atmospheric pressure, the low-cost of consumables. Other figuring methods make use of vacuum chamber (ion beam Figuring) which are expensive. On the other hand magnetorheological finishing requires expensive consumables. Although PF is dominant for the surface correction of metre scale surfaces, challenges still exist to improve the automation and stabilization of the plasma source. In the context of ever-increasing dimensions of optical components, there is a need for improving the robustness and securing the performance of the unique Plasma Delivery System (PDS) available in Cranfield. The current PDS is based on an inductive output L-type radio frequency (RF) circuit, Inductively Coupled Plasma (ICP) torch and computer numerically controlled (CNC) motion system. The combination of optical component surface dimensions and the material removal rate of the plasma jet lead to significant processing duration. Based on the existing PDS for our unique Plasma Figuring machine named Helios1200, we designed an enhanced PDS version. The novel design was given the capability to detect phases and automatically tune the impedance of the plasma. The novel control capability is aiming at secure the process determinism, assisting the machine operator by tuning key electrical components of the RF network and monitoring crucial processing parameters. Furthermore, specific assistances were provided during the three identified processing phases (ignition phase, regular operation and critical circumstance) of the plasma processing. Our design addressed particular functions on each phases to ensure an optimum performance during the Plasma Figuring process.MSc by Research in Manufacturin

    Estimation of the power absorbed by the surface of optical components processed by an inductively coupled plasma torch

    Get PDF
    The focus of this work is the determination of the heat flux function -thermal footprint- of a plasma jet generated by an inductively coupled plasma (ICP) torch. The parameters of the heat flux function were determined through the correlation of modelling and experimental results. One surface of substrates was exposed to an impinging jet while the temperature changes of the unexposed surface was recorded, analysed and used to derive the parameters of the heat flux function. From a modelling viewpoint, a series of finite element analyses (FEA) were carried out to predict temperatures of substrate surfaces. From an experimental viewpoint, the plasma torch was powered by a 1 kW radio frequency signal generator tuned at 39 MHz. The ICP torch equipped with a De-Laval nozzle impinged the surfaces of selected substrates at atmospheric pressure. Three sets of experiments -static, single pass and multi passes- were carried out to determine and validate the numerical description of the plasma jet. Also this work enabled to determine the maximum intensity of the heat flux distribution and the total power absorbed by substrate surfaces. Finally, the most advanced numerical model was used to assess the effect of a bi-directional raster scanning strategy that was used for the processing of large optical components

    Robotic polishing of large optical components

    Get PDF
    Lightweight space mirrors have been widely used in earth observation and astronomy applications. Many organizations and companies, such as NASA in America, ESA in Europe, SSTL in UK as well as CASC in China, have spent a lot of money and effort on researching new materials for larger size space mirrors to meet both the payload weight constraints of launch and the increased advanced manufacturing process demanded for higher observations quality. This project is aimed at robot neutral polishing of lapped, ground and polished optical substrates using an industrial FANUC robot system. The project focused on three main fields which were: robot polishing with polyurethane tool and cerium oxide, pitch polishing with pitch tool and cerium oxide, as well as polishing of a 400mm ULE component. The polishing process targets were to achieve: 1) a surface roughness (Ra) of 10 nm and a surface profile (Pt) of 6 µm and 2µm on lapped and ground substrates respectively with polyurethane based tools and 2) a surface roughness (Ra) of 2nm with a surface profile (Pt) unchanged on robot neutral polished substrates using pitch based tools. This thesis comprises four main sections: a literature review, an experimental implementation, metrology and analysis, and the final conclusions. The experiment results measured with the metrology equipment selected were analysed. Conclusions of the relationship between the polishing performance of a specific sample and the selected polishing tool, polishing slurry, tool pressure, polishing time and other parameters were drawn. Results obtained from robot neutral polishing were surface roughness (Ra) of 8-10nm and surface profile (Pt) of 6µm for 100mm square lapped and ground parts. The process scalability was demonstrated from robot neutral polishing in 45hours, a 400mm square ground component from a surface roughness (Ra) of 200nm to 10nm. There is additional work to be implemented in the future, such as the development of robot pitch polishing of robot neutral polished parts to achieve 2nm Ra

    Frontiers in Ultra-Precision Machining

    Get PDF
    Ultra-precision machining is a multi-disciplinary research area that is an important branch of manufacturing technology. It targets achieving ultra-precision form or surface roughness accuracy, forming the backbone and support of today’s innovative technology industries in aerospace, semiconductors, optics, telecommunications, energy, etc. The increasing demand for components with ultra-precision accuracy has stimulated the development of ultra-precision machining technology in recent decades. Accordingly, this Special Issue includes reviews and regular research papers on the frontiers of ultra-precision machining and will serve as a platform for the communication of the latest development and innovations of ultra-precision machining technologies
    corecore