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Abstract 

The focus of this work is the determination of the heat flux function –thermal footprint- of a plasma 

jet generated by an inductively coupled plasma (ICP) torch. The parameters of the heat flux function 

were determined through the correlation of modelling and experimental results. One surface of 

substrates was exposed to an impinging jet while the temperature changes of the unexposed surface 

was recorded, analysed and used to derive the parameters of the heat flux function. From a 

modelling viewpoint, a series of finite element analyses (FEA) were carried out to predict 

temperatures of substrate surfaces. From an experimental viewpoint, the plasma torch was 

powered by a 1 KW radio frequency signal generator tuned at 39 MHz. The ICP torch equipped with 

a De-Laval nozzle impinged the surfaces of selected substrates at atmospheric pressure. Three sets 

of experiments - static, single pass and multi passes- were carried out to determine and validate the 

numerical description of the plasma jet. Also this work enabled to determine the maximum intensity 

of the heat flux distribution and the total power absorbed by substrate surfaces. Finally, the most 

advanced numerical model was used to assess the effect of a bi-directional raster scanning strategy 

that was used for the processing of large optical components.  
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1. Introduction 

Atmospheric plasma torches [1,2,3] are commonly used in modern engineering and especially in 

surface treatment [4,5]. These plasma treatments are often based on dwell time methods and 

require a controlled exposure to obtain a uniformly treated surface [6-7]. One of these processes is 

called Plasma Figuring [8] and makes use of a bespoke inductively coupled plasma (ICP) torch [9]. 

The determination of the heat flux function of one type of these dedicated ICP torches is the 

motivation of this work.  

     The heat flux -thermal footprint- function investigated in this paper is provided by a modified ICP 

torch. The plasma torch is equipped with a convergent divergent nozzle that generates a turbulence 

free plasma jet that contains various species. Thus, species carried by the plasma jet travel at 

subsonic velocities in a well collimated manner until they impinge on the processed surface. This 

design was chosen to increase the efficiency -velocity and collimation- of the plasma jet.  
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     In the context of large optics fabrication, this ICP torch enables the local etching of silicon based 

materials [10]. Argon plasma is created and maintained through intense electro-magnetic fields 

induced by the RF signal applied to the coil -excitation region-. Then the central volume of the 

plasma receives the reactive species -fluorine compounds- that are ionised. The torch schematic is 

displayed in Figure 1.  

 
Figure 1. ICP torch equipped with a De-Laval nozzle 

     An extensive literature review was carried out to understand the existing numerical approach and 

current state of the art for both high temperature and isothermal unconfined axisymmetric jets.  

     The study of high temperature jets have motivated Mostaghimi [11], Dresvin and Amouroux [12] 

and Chen [13] amongst others. Mostaghimi focused on heat transfer in plasma spray coating 

processes. Dresvin described the general concept on convective heat transfer of jet and then applied 

it onto plasma jets. Chen’s research results were about heat transfer and flow into a radio frequency 

plasma torch. However, the bespoke torch investigated in this paper is characterised by a design that 

none of the aforementioned research have addressed yet.  

     The flow structures of isothermal jets impinging flat surface motivated a huge number of studies 

in the 70s and 80s [14, 15, 16]. The understanding of their thermo-fluid-dynamic features was 

further highlighted by Carlomagno [17] and Viskanta [18] . Figure 2 illustrates both aerodynamic and 

thermodynamic characteristics of an isothermal jets. 

 
Figure 2. Flow regions of an impinging circular jet (left), radial profile of heat transfer coefficient between a plate and a 

impinging jet (Nozzle diameter D=0.3634cm, ReD =28 000) (right) [19]  

 Figure 2 (left) illustrates the aerodynamic characteristics of an impinging jet that passes 

through four different regions [19] some of which exist only for certain nozzle-to-plate 

distance Z for a given diameter D. Indeed, when the nozzle-to-plate distance is reduced 

the jet fully developed region starts to disappear and then the whole decaying jet region 

vanishes. This disappearance happens for Z/D <6. If Z/D ~2, the high static pressure in the 
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stagnation region has a significant influence on the flow development up to the nozzle 

exit. Therefore the usual quasi-conical shape of the core region disappears [17].  

 Figure 2 (right) illustrates the radial profile of the heat transfer coefficient. The heat 

transfer coefficient profile is mainly influenced by the nozzle-to-plate distance over the 

diameter Z/D ratio. For large ratio values -Z/D > 10- the radial profile has a bell shape 

distribution. For intermediate ratio values -i.e. 6 < Z/D < 10- a peak appears near the 

centre and the averaged heat transfer value increases to its maximum for about ratio 

value equal six. For small ratio value -i.e. 3 < Z/D < 6- a secondary annular peak is present. 

Extra small ratio value -i.e. 0.25 < Z/D < 2 lead to relatively high heat transfer coefficients 

where impingement jet becomes wall jet [17].  

     The complex dimensionless number that represents the ratio of convective heat transfer over the 

conductive one is named the Nusselt number. Equation 1 enables to describe two important cases: 

the plate dimensions are close to or less than jet diameter, the plate dimensions are larger than jet 

diameter.    

Nu = C Ren (Z/D)m (L/D)k Pr                                                                                                                                                                                                         (1) 

where C, n, m and k are coefficients that were determined experimentally. A complete list of results 
can be sourced in Zuckerman and Lior work [20]. These coefficients depend largely on the 
experimental configurations. Z is nozzle-to-plate distance. D is the nozzle diameter. L is the plate 
dimension. Re is the Reynolds number. Pr is the Prandl number. 

Re = ρ v DH / μ                                                                                                                                                    (2) 

where ρ is the density of the fluid, v is the mean velocity of the fluid, DH is the hydraulic diameter of 
the nozzle, μ is the dynamic viscosity of the fluid.   

 Pr = Cp v / k                                                                                                                                                        (3) 

where Cp is the heat capacity per unit volume of the fluid, v its kinematic viscosity, and k its thermal 
conductivity. 
     Dresvin and Amouroux [12] described analytically the heat transfer mechanism using a Newtonian 
formulation then they introduced the concept of enthalpy because the gas temperature in plasma 
jet is well above 3,000 °C. From a numerical modelling viewpoint, high temperature jet research 
required either direct numerical simulations (DNS) or large eddy simulations (LES) [21]. These 
methods bring information that is not available using conventional CFD methods [22].       
    In a previous study carried out by the authors [9], the jet of the bespoke ICP torch nozzle was 
characterised in term of Reynolds number, temperature, velocity and pressure. Unlike in this paper, 
the plasma torch was operated using twenty percent more power and the nozzle-to-plate distance 
was 1.5 mm shorter. Whatever, two results obtained are worth to mention for the understanding of 
the unconventional modelling approach used in this paper. The Reynolds numbers ranged from 
3,800 to 10,350. The gas temperatures in the nozzle ranged from 6,500 °C by the inlet down to 1,500 
°C by the outlet. Although some experimental parameters are different, it is certain that the jet is 
axisymmetric but is not isothermal. Also, this nozzle confines the jet through its long divergent 
section. These specifications are the reasons for which neither analytical nor numerical approaches 
mentioned in this introduction can be used.   
     In this work, the heat flux transferred by the bespoke ICP torch was managed by a motion 
controller that was used to implement raster scan toolpath algorithms [8]. The plasma torch was 
moved along the x axis whereas the substrate is moved along the y axis. Figure 3 (left) illustrates a 
snapshot of the torch and the workpiece -420 mm side to side- in the processing chamber. Figure 3 
(right) shows the bi-directional raster scan toolpath that was used for the validation of the numerical 
models (section 4). 
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Figure 3. 400 mm diameter optical mirror processed using the bespoke plasma torch   

2. Material and methods  

2. 1. Description of experiments  

The experimental approach chosen to determine the thermal footprint of the ICP torch was based 

on three sets of experiments. These experiments involved three optical materials (dielectrics) that 

did not affect the characteristics of the plasma jet unlike metallic material would do. The initial 

surface roughness value of all substrates was less than 2 nm Ra (average roughness). The chosen 

materials were silicon, low expansion glass and silicon carbide. These three materials have very 

different thermal properties [23] (Table 1). The substrates were instrumented for temperature 

measurements [24] (section 3.1 and 3.2).  

     The first set of experiments consisted of dwelling the plasma torch for duration of one to five 

seconds. The authors named this test “static exposure”. The second set of experiments involved the 

displacement of the ICP torch at constant velocity along the x axis direction. The authors named this 

test “single pass exposure”. For these two sets of experiments, all three materials were used. The 

materials were fibre composite silicon carbide (MF type), single crystal silicon wafer (100 

crystallographic orientation), and ULE (Ultra Low Expansion) glass. These are identified as substrate 

01, 02 and 03 respectively (Figure 4).   

     The third set of experiments was named “multi pass exposure”. These experiments required only 

one material -ULE glass- (Figure 4 bottom right substrates 03 and 04) and the implementation of a 

toolpath algorithm that enabled the torch to raster scan the large 200 mm x 200 mm surface 

(Section 3.2).  

2. 2. Description of substrates used for experiments  

The pictures of the four substrates, dimensions and material types are provided in Figure 4.  
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Figure 4. Pictures of the four substrates, dimensions and material types    

The thermal properties of the selected materials are provided in Table 1 and Figure 5. Values are 

displayed for the range of temperatures from 20°C up to 350°C.  

Table 1. Thermal material properties of substrates. The range of each parameter is given from low to high temperature 

(20°C up to 350°C) 

Substrate Material 

Thermal 

conductivity K 

 (W.m-1.C-1) 

Heat 

capacitance Cp 

 (J.Kg-1.C-1) 

 

Density ρ 

(Kg/m3) 

Thermal 

diffusivity a 

 (10-6 m2/s) 

01 SiCa 121-50 700-1440 2650 65-13 

02 Siliconb 150-57  705-870  2330 91-28 

03 & 04 ULE c 1.31 767 2200 0.77 

a Fibre composite silicon carbide (SiC) type MF [25]  

b Single crystal silicon (100 orientation) [26, 27] 

c ULE Ultra Low Expansion glass [28]  

 
Figure 5. Thermal conductivity (left), and heat capacitance (right) of the three materials selected   

2. 3. Plasma torch  

The plasma jet was generated at atmospheric pressure using an ICP torch (Figure 1). The plasma of 
the torch was altered by the use of a De-Laval nozzle [9]. This feature modified the characteristic of 
the jet and consequently its thermal footprint. The torch operating parameters are displayed in 
Table 2. These parameters were consistently used to obtain the experimental results. Also the fixed 
match RF network was frequently tuned to maintain the high energy coupling between the RF signal 
generator and the plasma jet. Finally, the quartz tubes were regularly replaced to ensure the 
symmetry of the plasma jet and reduce losses of the electromagnetic fields.   
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Table 2. Parameter of the plasma torch   

Signal frequency 39.6 MHz  
Forwarded power 1,000 W  

Argon main flow 20 l/min 

Argon assist flow 0.92 l/min  

Reactive gas  SF6  

Reactive gas flow 0.08 l/min  

Nozzle(end)-to-plate 7.5 mm 

Nozzle(throat)-to-plate 36.1 mm 

3. Experimental apparatus  

3. 1. Experimental configurations for static and single pass exposure experiments  

The instrumentations of substrates 01, 02, and 03 were carried out by mean of K type 

thermocouples (TC) [29]. Surfaces not exposed to the plasma jet were instrumented (Figure 6). 

Temperature changes were measured during both the exposure and cooling down duration of the 

experiments. All TCs were embedded in thermal paste and held in position by means of 70 um thick 

Kapton tape and 100 um thick aluminium tape. Figure 6 and Figure 7 display the schematic of the 

instrumentation and the position of the thermal footprint.  

 
Figure 6. Schematic of the static exposure experiments  

 
Figure 7. Schematic of the single exposure experiments  

3. 2. Experimental configuration for multi pass exposure  

The large ULE test piece (substrate 04 Figure 4) was raster scanned using the ICP torch. The 

impinging plasma jet of the torch transferred the heat through a series of consecutive passes that 

were all parallel to each other’s (Figure 8). The raster scan starting position was located 55 mm away 

from the edge parallel to the first travel path and 62.5 mm away from the edge orthogonal to the 

travel direction (x axis). The torch travelled at constant velocity set to 4 m.min-1. The total distance 

was 325 mm (left to right). Then the plasma jet moved backward by crossing the surface in the 
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opposite direction (right to left). The pattern was repeated for completing the width of the raster 

scanning area. The raster scanned width was 90 mm. The pitch of the raster scanning was either 1 

mm or 2 mm.  

 
Figure 8. Tool path schematic for multi pass exposure experiments  

     For all experiments, the plasma torch was positioned below the processed surfaces. The plasma 

jet was pointing upwards and the distance between the top of the torch nozzle and the substrate 

surface was checked prior each run. The nozzle-to-plate distance was 7.5 mm. The 25 mm thick ULE 

substrate was mounted in a bespoken holder to ensure that only the lower surface was exposed to 

the plasma jet.  

     The instrumentation of the large ULE substrate was carried out using K type TCs. The positions of 

these TCs were chosen for measuring the temperature changes onto both exposed and un-exposed 

surfaces of the substrate (Figure 9). Temperature records lasted 25 minutes while the processing -

substrate exposure to the plasma torch- lasted 3.5 and 7 minutes for the 2 mm and 1 mm raster scan 

pitch respectively. For accuracy and repeatability reasons, all three areas of interest were 

instrumented with two TCs. All TCs were embedded in thermal paste and held in position by means 

of two layers of Kapton tape and two layers of aluminium tape.  
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Figure 9. Position of the TC 01 on the un-exposed surface (left), positions of the TCs 02, 03 and field of view area of the 

pyrometer on the exposed surface (right)  

     Local surface temperatures of the area exposed to the plasma jet were logged using a pyrometer -

8 μm to 14 μm wavelength spectral bandwidth- [30] because the position of this area changes 

continuously. The pyrometer sensor head was maintained at 15 mm away from the surface and was 

mounted on the plasma torch carrier at a distance of 112.5 mm. This setup enabled to prevent the 

pyrometer measurements to be affected by the plasma or the room illumination. Also the emissivity 

of the pyrometer was set to 0.95 after comparing its response with TCs positioned near the 

pyrometer field of view area. The acquisitions were carried out systematically mid distance to the 

substrate surface for every odd passes during each 90 mm raster scan. A total of 46 and 23 

temperature measurements were carried out for 1 mm and 2 mm pitch respectively.  

4. Numerical modelling   

4. 1. Modelling approach  

Two sets of novel numerical models were created using the commercial FEA software Ansys version 

14. These models solved conduction problems using Fourier’s law and Newton’s law of cooling. 

Indeed, the radiation was ignored because the gas temperature is just above the thousand degree 

Celsius mark. The first and the second sets were created to predict temperature increase for static 

exposure and single pass exposure respectively. Models were two dimensional, transient, and 

nonlinear. The elements were quadratic and the mesh was mapped. A bespoke numerical thermal 

footprint was created to describe the plasma jet thermal footprint.  

4. 2. Boundary conditions  
a) Geometry and material properties of the substrates 

The substrate geometries and dimensions are provided in Figure 4. The material properties are 

provided in Table 1and Figure 5.   

b) Heat flux footprint of the plasma jet 
     This numerical heat flux footprint was characterised by four parameters: gas temperature, 

convection coefficient distribution type, convection coefficient distribution FWHM, convection 

coefficient maximum intensity.  

 The gas temperature of the impinging jet was known to be in the range between 1,000 ⁰C 

and 1,500 ⁰C [9]. Therefore, the gas temperature value was set to 1,250 ⁰C. This choice is 

supported by Gordon results [31] who highlighted that turbulent jets reduce strongly the 

stagnation region dimension and favour constant temperature of the gas at the wall. 

 The heat flux distribution type was set to be Gaussian. This choice was based on the results 

published by Jiang [32]. Also, according to Goldstein [33], the Bell shape distribution appears 

when Z/D ratio is equal or greater than six. The Z/D ratio of the bespoke jet was 7.22. Also, 

this choice was supported by analysing the single pass experimental results.  

 The full width at half maximum (FWHM) of the Gaussian distribution of convection 

coefficient was set to 16 mm. This value was determined in an empirical manner through the 

single pass dynamic experiments carried out on the silicon substrate (section 5.2 and Figure 

17).  

𝐹𝑊𝐻𝑀 = 2√2𝐿𝑛(2) 𝜎                                                                                                                     (4) 

where 𝜎 is the standard deviation. 
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 The maximum intensity of the convection coefficient distribution was determined 

empirically. This value was inferred from the static exposure experiments carried out on the 

SiC and ULE substrates (section 5.1 and Figure 15). 

The authors highlight that the numerical heat flux distribution was applied on surface cells through a 

bespoke sub routine that automatically accommodated for mesh cell changes and enabled to apply 

rigorously the same heat flux distribution parameters into all models.  

c) Environment of the substrates  

     An investigation was carried out to determine the convection coefficient value for cooling down 

the substrates when set into the processing chamber. To do so, a 200 mm x 200 mm ULE substrate 

was heated up to 100 °C and then it was left to cool down surrounded by ambient air. The 

temperature of the ambient air was measured and maintained at 20°C during this experiment. 

Experimental results matched the Newton’s law of cooling [34]. The cooling down convection 

coefficient for a horizontally positioned substrate was determined to be 10 W.m-2.C-1. This result is in 

agreement with the range of values mentioned in publication [35].  

4. 3. Mesh independency  

     The dimension of the mesh inner cell was calculated using the quarter of the Fourier number. 

When this method was not possible then the spatial discretisation of the models were tested using 

regular meshing refinement procedure. In all cases, the mesh independence was ensured.  

4. 4. Numerical model created for static exposure  

For the static exposure experiments, the authors created two dimensional axisymmetric models. The 

authors calculated a pseudo radius value for substrates 01 and 03 because the real substrates have a 

near square shape. This method provided an equivalent thermal mass for these substrates.  

     Figure 10 left displays the convection coefficient and temperature distributions used for the 

convection based model. The heat flux has a pseudo Gaussian profile because the calculation took 

into account the difference of temperatures between gas and surface.  

   The local heat flux changed from cell to cell for each step of transient calculation. The main benefit 

of this numerical approach is to decrease the intensity of the thermal footprint during the 

calculation when the substrate temperature has increased. This modelling approach describes 

closely the interaction between the substrate and the jet whatever the respective temperatures.  

 

 
Figure 10. Thermal footprint for static exposure: convection and temperature profiles (left), Heat flux profile (right) 

     A second approach was the use of the regular heat flux distribution (Figure 10 right). This 

modelling approach did not require setting a gas temperature. Such approach was less rigorous but 

enabled to issue a number that explicitly determined the total amount of power transferred through 

the substrate surface. In the following equation   
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𝑄𝑇𝑜𝑡𝑎𝑙 =
𝐴

 2𝜋 𝜎2 ∫ 𝑒
−(𝑟−𝜇)2

(2𝜎2)
∞

0 ∫ 𝑟 ⅆ𝜃ⅆ𝑟
2𝜋

0
                                                                                                        (5) 

where 𝐴 is the heat flux maximum intensity.  2𝜋 𝜎2 is the normalisation coefficient. 𝜎 is the 

standard deviation. 𝜇 is the offset distance from the edge of the substrate. 𝜃 is the rotational angle.  

𝑟 is the radial distance.  

4. 5. Numerical model created for single pass exposure  

The single pass exposure model was created using a plan two dimensional approach. As in the 

previous model, the boundary condition of each cell of the exposed surface was applied using the 

bespoke convection based Gaussian heat transfer distribution. Figure 11 shows the straight 

trajectory of torch for a single pass exposure. It was assumed that all cross sections received the 

same amount of heat. Both numerical and experimental results were extracted from the lower 

central point of the cross section located onto the surface unexposed by the torch jet. Thus the edge 

effect was neglected. 

     The relative intensity of the heat transfer function was calculated using the feed speed 

parameter. Indeed, this calculation is implicit and requires to change the maximum intensity of the 

heat flux distribution for each iteration. This intensity was dependant of the virtual position of the 

heat flux distribution along the scan direction.  

 
Figure 11. Single pass exposure  

4. 6. Numerical model created for multi pass exposure  

Multi pass exposure model required the implementation of an additional routine for shifting the 

thermal footprint in the Y direction. Indeed, the thermal footprint was re-applied after a calculated 

duration related to raster scan parameters such as feed speed, stroke length and pitch distances. 

This duration was based on the time between two consecutive passes (Figure 8). This bespoke 

thermal footprint was applied at set times when the torch is physically crossing the middle cross 

section of the substrate.  

5. Results  

There are three set of result sections in this paper. All sections present a correlation between 

experimental and numerical results. The first section is about static exposure tests. The second 

section is about dynamic exposure tests carried out through single pass exposures. The third section 

is about the dynamic heat transfer exposure tests carried out through multi pass exposures.  
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5. 1. Substrates exposed to static heat source (static exposures) 

The first set of results focuses on the temperature increases while the plasma jet dwelled for 5 

seconds onto the substrate surfaces. The local temperature increase is plotted in the figures below 

for substrates: 01, 02, and 03. 

 
Figure 12. Surface temperature versus time. Measurement carried out at the rear of substrate 01 (SiC)  

 
Figure 13. Surface temperature versus time. Measurement carried out at the rear of substrate 02 (Silicon) 

 
Figure 14. Surface temperature versus time. Measurement carried out at the rear of substrate 03 (ULE)  

The second set of results highlighted the maximum increase of temperature for exposure durations 

that were set from one up to five seconds (Figure 15).  

 
Figure 15. Maximum temperature increase versus exposure duration: SiC (left), silicon (middle): ULE substrate 03 (right)  

     The convection based model did slightly either over or under estimate the static experimental 

results. The mean errors for the maximum temperature increases were 0.40 °C, 1.14 °C and 23.8 °C 

for tests carried out on ULE, SiC, and silicon substrate respectively. The author’s believe that 
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measurements carried out on the silicon substrate using TCs were affected by the infrared emission 

spectrum of the plasma jet. Indeed, this material is characterised by a small absorption coefficient in 

this spectrum range [36].  

     This work highlighted the benefit of acquiring surface temperatures for duration much longer that 

exposure duration when dealing with glass materials because the thermal diffusivity values were 

small. The maximum temperature increase of the unexposed surface was often recorded minutes 

after the exposures. Figure 16 (upper half) shows temperature variations on ¾ isometric views after 

5 sec exposure duration. Figure 16 (lower half) shows the duration required for reaching a pseudo 

thermal equilibrium both through and across the substrate volumes. 

  

Figure 16.  Temperature variations in substrates, ¾ isometric view: SiC (left), silicon (middle): ULE substrate 03 (right) 

5. 2. Substrates exposed to a thermal footprint in motion (single pass exposures) 

This section focuses on the temperature increases while the plasma torch was moved at constant 

feed speed. Feed speed and TCs directions were orthogonal. Two sets of results are shown (Figure 

17 and Figure 18).  

     The first result is about the increases of surface temperature that were both measured and 

modelled on the un-exposed surface of a silicon wafer. A set of four thermocouples -positioned 5 

mm apart one to the others- enabled to measure the spatial temperatures along a line perpendicular 

to the torch travel direction (Figure 7 left). The temperature records were made when the torch was 

positioned precisely below the TC set. The repeat of this test led to the temperature profile shown 

Figure 17.  

 
Figure 17. Temperature increases during a dynamic test on Si substrate (feed speed: 6 m.min-1)  

     The second set of results focuses on the maximum temperature increases for feed speeds that 

ranged from 2 m.min-1 up to 8 m.min-1 (Figure 7 right). Figure 18 shows results for both substrate 02 
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(silicon) and substrate 03 (ULE). Correlation between experimental and numerical results is within a 

few degrees Celsius.  

 
Figure 18. Maximum temperature increases versus feed speed: substrate 02 (silicon) (left), substrate 03 (ULE) (right)  

5. 3. Raster scanning experiments (multi pass exposure)  

A further validation of the FEA model was carried out through two experiments that required the ICP 

torch to raster scan bi-directionally the surface of the substrate 04 (ULE). This experiment was 

significantly different compared to the one described previously (single pass exposures) because the 

thermal footprint is repeatedly applied onto the surface (Figure 8) and the surface is four time 

larger. Also, the temperature measurements were carried out at three different secured positions. 

Figure 19 show the results.  

 
Figure 19. Logged and computed temperature versus time: 1mm pitch (left), 2mm pitch (right). Feed speed: 4m.min-1  

     Line graphs highlight very large temperature changes onto the different surface areas of the 

substrates. Results show that the exposed surface experienced a large temperature increase. Also 

the temperature increase of the area directly exposed by the plasma jet reached a platen value (blue 

crosses). A discrepancy between experimental and numerical results is noticeable. The authors 

consider that the heat from the torch affected the entire processing chamber and consequently 

decreased the cooling rate.   
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6. Discussions  

6.1. The combined experimental-modelling approach 
This work demonstrated the benefit of carrying out different types of simple experiments and 

creating dedicated numerical models for the investigation of temperature changes caused by a 

plasma torch. Static and dynamic experiments contributed to quantitative and qualitative analysis 

respectively.  

6.2. Determination of the heat flux parameters  
All parameters of the heat flux distribution were determined through the novel approach presented 

in this paper. The results obtained using the thick low thermal conductivity substrate (ULE) and the 

thick high thermal conductivity substrate (SiC) contributed to determine the total amount of power 

absorbed. The results obtained using the thin high thermal conductivity substrate (silicon) 

contributed to determine the heat flux distribution profile type. On the other hand, the heat flux 

based model was used to derive the maximum intensity of the heat flux. The value was 13.7 kW.cm-

2.   

6.3. Need for non-linear numerical scheme 
     The implementation of a nonlinear modelling scheme is believed to be necessary even if most 

results showed temperature increases well below 100 ⁰C. The reason is that these results are shown 

for the surfaces un-exposed to the thermal footprint. The maximum temperatures increase, onto the 

surface exposed to the plasma jet, often reached 250 ⁰C which fully justified the use of non-linear 

material properties.  

6.4. Nozzle efficiency  
From a fluid dynamic viewpoint, there is a positive assessment on the jet performance. The main 

reason is the ratio between nozzle-to-plate and jet diameter. Indeed, Z/D is equal to 7.2. This value is 

likely to favour both the existence of turbulence and a maximum stagnation point as reported by 

Gardon, and Akfirat [31]. This ratio is beneficial for the processing when the torch is used to remove 

material but this point of discussion is outside the scope of this paper.  

     From a thermal viewpoint, there is also a positive assessment on the jet performance. Indeed, the 

ratio Z/D value affects greatly the amount of heat transferred into the substrate. Using equation 5, it 

was found that 220 W from the original 1,000 W where transferred into the substrates. This value is 

very low. However it is known that regular ICP torches are roughly 50% efficient [37, 38]. 

Furthermore, this torch is equipped with a large water cooled De-Laval nozzle that absorbs more 

than ten percent of the supply power [39].  

6.5. Error analysis of the technique 
A potential source of errors that affected the experimental recordings were dominated by the 

perturbations due to the electromagnetic field of the RF plasma torch. However, the authors have 

developed their own expertise for shielding sensors, electrical leads and recording instruments using 

metal foils.   

     A numerical error was due to the set infinite dimension normal to the cross sections in the plan 

2D numerical models used to predict single and multi pass exposure experiments. Indeed, ULE 03, 

ULE 04 and SiC substrates were 100 mm, 200 mm and 75 mm in length along the exposure direction. 

Then, the authors express a conservative view on this error.     
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     Other potential errors were due to the type of boundary conditions chosen for heat flux of the jet. 

In static conditions, the two approaches used to numerically describe the thermal footprint led to 

two sets of results. The use of heat flux based thermal footprint led to overestimate most 

experimental results (Figure 20). Indeed, when the substrate temperature is close to the gas 

temperature then the amount of heat transferred has to be reduced such as in the real physics. The 

mean errors for the maximum temperature increases of this model are 0.19 °C, 2.35 °C and 5.87 °C 

for tests carried out on ULE, SiC, and silicon substrates respectively.  

 
Figure 20. Maximum temperature increases versus exposure duration: SiC (left), silicon (middle): ULE substrate 03 (right)  

     Dynamic single pass experimental conditions required a different approach thus a plan two 

dimensional model was used. The surface temperature distribution predictions were within than half 

degree Celsius deviation from the experimental results.  

6.6. Processing recommendations in the context of optical fabrication  
The author’s modelling approach enabled to predict the surface temperature increases occurred by 

a bi-directional raster scan toolpath. These temperature increases were predicted onto both 

exposed and un-exposed surfaces. These results highlighted that large substrates do experience 

significant surface temperature variations during and after processing. Results obtained are 

characteristic of a raster scan and un-forced natural cooling down of glass substrates. The 

correlation between the numerical model results and the recorded measurements is within a few 

degrees Celsius. Indeed, it is beneficial to create diagnostic tools for the identification of areas where 

thermally induced stresses exist because they can lead to failure of the processed component.  

7. Conclusion 

This work enabled the determination of the heat flux -thermal footprint- of a plasma jet generated 

by a bespoke ICP torch through a novel method.  

     The total power absorbed by the substrates was 220 W for an ICP torch equipped with De-Laval 

nozzle that is powered by 1 kW RF signal and positioned at a distance of 7.5 mm from an optical 

surface. The results showed that temperatures could be spatially and transiently predicted for both 

static and dynamic experimental conditions. 

     Then the effects of a bi-directional raster scan toolpath carried out on a large glass substrate were 

highlighted. Results revealed that local temperatures of the processed surface increase progressively 

before reaching a platen value. These results suggest that engineers should choose a specific 

toolpath strategy depending on application requirements. Indeed, uniform surface temperature will 

enable higher quality of the surface treatment.   
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