410 research outputs found

    Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation

    Get PDF
    This paper addresses the problem of implementing a Simultaneous Localization and Mapping (SLAM) algorithm combined with a non-reactive controller (such as trajectory following or path following). A general study showing the advantages of using predictors to avoid mapping inconsistences in autonomous SLAM architectures is presented. In addition, this paper presents a priority-based uncertainty map construction method of the environment by a mobile robot when executing a SLAM algorithm. The SLAM algorithm is implemented with an extended Kalman filter (EKF) and extracts corners (convex and concave) and lines (associated with walls) from the surrounding environment. A navigation approach directs the robot motion to the regions of the environment with the higher uncertainty and the higher priority. The uncertainty of a region is specified by a probability characterization computed at the corresponding representative points. These points are obtained by a Monte Carlo experiment and their probability is estimated by the sum of Gaussians method, avoiding the time-consuming map-gridding procedure. The priority is determined by the frame in which the uncertainty region was detected (either local or global to the vehicle's pose). The mobile robot has a non-reactive trajectory following controller implemented on it to drive the vehicle to the uncertainty points. SLAM real-time experiments in real environment, navigation examples, uncertainty maps constructions along with algorithm strategies and architectures are also included in this work.Fil: Auat Cheein, Fernando Alfredo. Universidad Técnica Federico Santa María; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pereira, Fernando M. Lobo. Universidad de Porto; PortugalFil: Di Sciascio, Fernando Agustín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentin

    Active Mapping and Robot Exploration: A Survey

    Get PDF
    Simultaneous localization and mapping responds to the problem of building a map of the environment without any prior information and based on the data obtained from one or more sensors. In most situations, the robot is driven by a human operator, but some systems are capable of navigating autonomously while mapping, which is called native simultaneous localization and mapping. This strategy focuses on actively calculating the trajectories to explore the environment while building a map with a minimum error. In this paper, a comprehensive review of the research work developed in this field is provided, targeting the most relevant contributions in indoor mobile robotics.This research was funded by the ELKARTEK project ELKARBOT KK-2020/00092 of the Basque Government

    Lighthouses and Global Graph Stabilization: Active SLAM for Low-compute, Narrow-FoV Robots

    Full text link
    Autonomous exploration to build a map of an unknown environment is a fundamental robotics problem. However, the quality of the map directly influences the quality of subsequent robot operation. Instability in a simultaneous localization and mapping (SLAM) system can lead to poorquality maps and subsequent navigation failures during or after exploration. This becomes particularly noticeable in consumer robotics, where compute budget and limited field-of-view are very common. In this work, we propose (i) the concept of lighthouses: panoramic views with high visual information content that can be used to maintain the stability of the map locally in their neighborhoods and (ii) the final stabilization strategy for global pose graph stabilization. We call our novel exploration strategy SLAM-aware exploration (SAE) and evaluate its performance on real-world home environments.Comment: 7 pages, 7 figure

    Contributions to autonomous robust navigation of mobile robots in industrial applications

    Get PDF
    151 p.Un aspecto en el que las plataformas móviles actuales se quedan atrás en comparación con el punto que se ha alcanzado ya en la industria es la precisión. La cuarta revolución industrial trajo consigo la implantación de maquinaria en la mayor parte de procesos industriales, y una fortaleza de estos es su repetitividad. Los robots móviles autónomos, que son los que ofrecen una mayor flexibilidad, carecen de esta capacidad, principalmente debido al ruido inherente a las lecturas ofrecidas por los sensores y al dinamismo existente en la mayoría de entornos. Por este motivo, gran parte de este trabajo se centra en cuantificar el error cometido por los principales métodos de mapeado y localización de robots móviles,ofreciendo distintas alternativas para la mejora del posicionamiento.Asimismo, las principales fuentes de información con las que los robots móviles son capaces de realizarlas funciones descritas son los sensores exteroceptivos, los cuales miden el entorno y no tanto el estado del propio robot. Por esta misma razón, algunos métodos son muy dependientes del escenario en el que se han desarrollado, y no obtienen los mismos resultados cuando este varía. La mayoría de plataformas móviles generan un mapa que representa el entorno que les rodea, y fundamentan en este muchos de sus cálculos para realizar acciones como navegar. Dicha generación es un proceso que requiere de intervención humana en la mayoría de casos y que tiene una gran repercusión en el posterior funcionamiento del robot. En la última parte del presente trabajo, se propone un método que pretende optimizar este paso para así generar un modelo más rico del entorno sin requerir de tiempo adicional para ello

    RoboEarth Semantic Mapping: A Cloud Enabled Knowledge-Based Approach

    Get PDF
    The vision of the RoboEarth project is to design a knowledge-based system to provide web and cloud services that can transform a simple robot into an intelligent one. In this work, we describe the RoboEarth semantic mapping system. The semantic map is composed of: 1) an ontology to code the concepts and relations in maps and objects and 2) a SLAM map providing the scene geometry and the object locations with respect to the robot. We propose to ground the terminological knowledge in the robot perceptions by means of the SLAM map of objects. RoboEarth boosts mapping by providing: 1) a subdatabase of object models relevant for the task at hand, obtained by semantic reasoning, which improves recognition by reducing computation and the false positive rate; 2) the sharing of semantic maps between robots; and 3) software as a service to externalize in the cloud the more intensive mapping computations, while meeting the mandatory hard real time constraints of the robot. To demonstrate the RoboEarth cloud mapping system, we investigate two action recipes that embody semantic map building in a simple mobile robot. The first recipe enables semantic map building for a novel environment while exploiting available prior information about the environment. The second recipe searches for a novel object, with the efficiency boosted thanks to the reasoning on a semantically annotated map. Our experimental results demonstrate that, by using RoboEarth cloud services, a simple robot can reliably and efficiently build the semantic maps needed to perform its quotidian tasks. In addition, we show the synergetic relation of the SLAM map of objects that grounds the terminological knowledge coded in the ontology

    Camera Pose Optimization for 3D Mapping

    Get PDF
    Digital 3D models of environments are of great value in many applications, but the algorithms that build them autonomously are computationally expensive and require a considerable amount of time to perform this task. In this work, we present an active simultaneous localisation and mapping system that optimises the pose of the sensor for the 3D reconstruction of an environment, while a 2D Rapidly-Exploring Random Tree algorithm controls the motion of the mobile platform for the ground exploration strategy. Our objective is to obtain a 3D map comparable to that obtained using a complete 3D approach in a time interval of the same order of magnitude of a 2D exploration algorithm. The optimisation is performed using a ray-tracing technique from a set of candidate poses based on an uncertainty octree built during exploration, whose values are calculated according to where they have been viewed from. The system is tested in diverse simulated environments and compared with two different exploration methods from the literature, one based on 2D and another one that considers the complete 3D space. Experiments show that combining our algorithm with a 2D exploration method, the 3D map obtained is comparable in quality to that obtained with a pure 3D exploration procedure, but demanding less time.This work was supported in part by the Project ‘‘5R-Red Cervera de Tecnologías Robóticas en Fabricación Inteligente,’’ through the ‘‘Centros Tecnológicos de Excelencia Cervera’’ Program funded by the ‘‘Centre for the Development of Industrial Technology (CDTI),’’ under Contract CER-20211007
    corecore