
Received 2 January 2023, accepted 21 January 2023, date of publication 25 January 2023, date of current version 31 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3239657

Camera Pose Optimization for 3D Mapping
IKER LLUVIA 1, ELENA LAZKANO 2, AND ANDER ANSUATEGI 1
1Autonomous and Intelligent Systems Unit, Tekniker, Basque Research and Technology Alliance (BRTA), Eibar, 20600 Gipuzkoa, Spain
2Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, 20018 Gipuzkoa, Spain

Corresponding author: Iker Lluvia (iker.lluvia@tekniker.es)

This work was supported in part by the Project ‘‘5R-Red Cervera de Tecnologías Robóticas en Fabricación Inteligente,’’ through the
‘‘Centros Tecnológicos de Excelencia Cervera’’ Program funded by the ‘‘Centre for the Development of Industrial Technology (CDTI),’’
under Contract CER-20211007.

ABSTRACT Digital 3D models of environments are of great value in many applications, but the algorithms
that build them autonomously are computationally expensive and require a considerable amount of time to
perform this task. In this work, we present an active simultaneous localisation and mapping system that
optimises the pose of the sensor for the 3D reconstruction of an environment, while a 2D Rapidly-Exploring
Random Tree algorithm controls the motion of the mobile platform for the ground exploration strategy.
Our objective is to obtain a 3D map comparable to that obtained using a complete 3D approach in a time
interval of the same order of magnitude of a 2D exploration algorithm. The optimisation is performed using
a ray-tracing technique from a set of candidate poses based on an uncertainty octree built during exploration,
whose values are calculated according to where they have been viewed from. The system is tested in diverse
simulated environments and compared with two different exploration methods from the literature, one based
on 2D and another one that considers the complete 3D space. Experiments show that combining our algorithm
with a 2D exploration method, the 3D map obtained is comparable in quality to that obtained with a pure
3D exploration procedure, but demanding less time.

INDEX TERMS 3D mapping, active vision, exploration, mobile robotics, next best view, ray-tracing.

I. INTRODUCTION
Mobile robots are of great value in many areas, such as
logistics, inspection and maintenance, or personal assistance.
For this reason, their popularity has grown rapidly in the
recent years, being demanded for a wide variety of areas and
objectives. Nevertheless, there are still many challenges for
an effective and safe autonomous operation [1]. Autonomous
navigation is still a challenge due to the specific requirements
and peculiarities of each scenario to which robotic systems
have to be adapted.

Navigation requires planning the trajectory to the destina-
tion, and thus the robot needs knowledge of the morphology
of the environment usually in the form of a pre-built map.
The mapping process is performed by guiding the robot
through the whole environment by an operator by means
of teleoperation. The generated map is used for localisation
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purposes too, to estimate the position of the robot in the
world, specially in GPS-denied environments.

Simultaneous localisation and mapping (SLAM) is the
problem of building a map with uncertain localisation.
Multiple algorithms and techniques have emerged in the last
two decades, but most of them share the guidance of the robot
by a human during the mapping process to ensure the full
coverage of the environment and to ease the detection of loop
closures as well. In fact, loop closure detection is the process
of recognising an alreadymapped area, and it is still one of the
biggest problems in SLAM [2]. The seed of loop closure is to
minimise the accumulated error [3], [4] during mapping and
correct the map being built, increasing the coherence between
the digital representation and the real scenario. Despite this,
the resulting model usually needs a post-processing refining
process to correct any erroneously added element. Altogether,
it is not a straightforward process to perform all these actions
automatically without no human intervention.

The process of teleoperating a robot tomap an environment
is usually a highly time consuming task, especially in
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large areas or when the movement of the robot is limited.
In other cases, it is difficult or even impossible for the
robot to be guided due to insufficient connectivity or
dangerous conditions, such as in rescue operations of natural
disasters. Also, a technician should be available and present
so the robot completes the mapping process efficiently,
which is not always possible in real scenarios. Besides,
environments where mobile robots end up operating in are
often unstructured and changing, and it leads to a fast decay
of the performance over time. This issue makes it necessary
to rebuild or edit the map regularly.

Actively calculating robot paths while building the map
of an environment without prior information is called Active
SLAM (ASLAM) [5]. The active term refers to an online
search for exploration destinations formapping, instead of the
traditional ‘‘passive’’ and teleoperated procedure. ASLAM
simplifies the setting up of a navigation system in many
applications, as the robot is capable of building the map by
itself with no human interaction.

Hitherto, the concept of ASLAM has been introduced
from the field of mapping, but a similar problem has been
addressed in computer vision. Indeed, the problem was first
discussed about 20 years ago by computer vision researchers
Bajcsy, Cowan, Kovesi and others, and it was referred as
active sensing, active vision or active perception [6], [7].
Active vision is defined as a reactive action of the sensor
to obtain information from the environment for a particular
purpose. Applied to mobile robotics, active perception refers
to the capability of the robot to actively modify the sensor
state to get a better understanding of the surroundings and
reduce the localisation uncertainty. More specifically, this
variant is known as active localisation [8].
In general, an ASLAM algorithm consists of three iterative

phases [9]:
• Pose identification. Given the partial map of the
environment, the robot identifies a set of destinations
that will potentially increase the mapped area of the
environment. They can also be destinations to reduce
both the uncertainty of the localisation and the uncer-
tainty of some already seen elements. The computational
complexity of the evaluation grows exponentially with
the search space [10]. A concept that is widely used
in the context of exploration is that of a frontier [11].
Frontiers are free known points next in the boundary
of unexplored regions. In principle, they are optimal
destinations to which the robot should navigate to
expand the explored area.

• Goal selection. Potential destinations are evaluated and
the best one selected, estimating the cost and gain
of each of them. Each approach may use a different
method, but most of them consider variables such as the
distance between the actual position and the target pose
or the size of the frontier. Generally, cost and gain are
inputs for a final value called utility [12]. Utility serves
as ametric to compare exploration trajectories [13], [14].
Ideally, to compute the real utility of a given action, the

robot should reason about the evolution of the posterior
over the robot pose and the map, taking into account
future (controllable) actions and future (unknown) mea-
surements. However, computing this joint probability
analytically is, in general, computationally intractable,
and thus, it is approximated [15].

• Navigation and checking. The robot moves towards the
goal selected in the previous step, updating the map
in the process, i.e., adding new elements or modifying
the already added ones. The robot may navigate using
a classic algorithm [16] or an exploration oriented
technique [17]. The navigation finishes when (a) the
robot reaches the goal, (b) another optimal destination
is detected and sent to the navigation module, or (c) a
certain termination criteria is satisfied. Until the last
case occurs, the system keeps identifying poses and
navigating to the best ones iteratively. A termination
criteria is required in order the robot not to loop
indefinitely [18], [19].

ASLAM methods for the generation of 3D maps have
two main drawbacks for their implementation. On the one
hand, its computational cost is very high, due to the large
number of elements that an unknown environment can have
and the many different possibilities of exploring it. On the
other hand, depending on the characteristics of the sensor
and the structure of the environment, the robot may have to
navigate to more destinations than one would expect in order
to map the entire space. These two reasons make ASLAM
algorithms require a large amount of time to complete the
scan. Our objective is to test whether, using the same time as
a 2D exploration algorithm, we can obtain a 3D map similar
to that obtained by a complete 3D approach. To this end,
we propose a method that optimises the pose of a sensor so
that it always faces the area of the environment about which
it has the least information.

This paper is organised as follows. Related work in the
ASLAM literature is reviewed in Section II. The proposed
approach is described in Section III. How the presented work
is implemented is described in Section IV, explaining the
evaluation performed in simulation in Section V. Section VI
summarises the paper and provides future work alternatives.

II. RELATED WORK
ASLAM approaches may focus on improving any of the
phases described in Section I (pose identification, goal
selection and navigation and checking). One relevant aspect
that differentiates one algorithm from another is whether it
optimises the complete trajectory of the robot during explo-
ration or it only estimates an optimal viewpoint [17], [20].
In the latter case, only the navigation destination is calculated,
and a generic algorithm that does not address exploration is in
charge of path planning. Another common criterion to group
these methods is the localisation uncertainty. Exploration can
assume perfect positioning [21] or, on the contrary, it can
address localisation uncertainty too [22], setting destinations
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not only to broaden the knowledge about the environment, but
also to improve localisation estimates. Also, the search space
for the pose identification step may vary as well. Candidates
can be found in the entire map, or they can be limited to a part
of it. Additionally, the candidate evaluation can be performed
sequentially before and after the navigation step, or it can
be performed continuously while the robot moves through
the environment. In this case, the complete trajectory can be
fulfilled, or, instead, it can be interrupted and a trajectory
towards a new destination executed. As we can observe,
the problem of ASLAM can be faced with many different
perspectives, and the there are many trends in optimisation.
In the following paragraphs, a brief review of the different
approaches relevant to the current literature is done.

Even though it is one of the first contributions to ASLAM
and not a recent work, we consider that the approach of
Brian Yamauchi [11] must be underlined, as many methods
are still based on the same strategy. He proposes a solution
based on frontiers, the key idea behind which is: ‘‘to gain
the most new information, move to the boundary between
open space and uncharted territory’’. To do so, he uses
an evidence grid map where each point is free, occupied
or unknown. Free points adjacent to unknown points are
potential exploration destinations and they are grouped into
frontier regions. Then, the robot navigates iteratively to the
nearest reachable frontier. From there, the robot is able to
get observations of unexplored space and add them to the
map, in addition to seeing new potential goals. The path
planner uses a depth-first search to calculate the shortest
obstacle-free path from the robot’s current position to the goal
location. Navigating to each vantage point and discarding
inaccessible ones, the robot can map every reachable point
in the environment.

Senarathne and Wang [23] extend Yamauchi’s work to
3D volumes and present a strategy based on the concept
of surface frontiers. They detect surfaces in a given 3D
occupancy grid map and extract their edges. Then, voxels
that do not have their six faces exposed to unmapped space
are discarded and the rest are considered as frontier voxels.
Finally, surface frontier representatives are generated that
indicate the direction in which the surface is projected.
Similarly, Dornhege and Kleiner [24] present a frontier-based
ASLAM of a 3D environment, but they seek frontiers in
the complete volumetric space, and not only using surfaces.
Besides, they set a specific number of poses as a termination
criteria.

Some ASLAMmethods propose to optimise the trajectory
itself for mapping purposes and not only for the exploration
goal of each iteration. In this vein, the use of Rapidly
Exploring Random Trees (RRTs) [25] with a Receding
Horizon (RH) strategy is a well-known sampling-based
technique [26]. Umari and Mukhopadhyay [27] use RRTs to
grow towards unknown regions and passively detect frontiers.
The tree is not used to define the robot trajectory itself, but
to search for frontier points. It runs independently of the

robot movement. Likewise, Papachristos et al. [28] present
an RH-based ASLAM strategy that considers the uncertainty
of the robot localisation as well. In fact, the RRT is only
used to find exploration destinations, and it is a second
planning layer the one that aims to optimise the probabilistic
mapping behaviour of the robot andminimise the root’s belief
uncertainty. In an attempt to get the benefits of different
exploration methods, some approaches propose combining
them in a single ASLAM solution [10], [29], [30].

As during the exploration a complete map is not available,
some approaches concur that ASLAM strategies should
include explicit place revisiting actions to reduce the localisa-
tion uncertainty [31]. In that vein, Carlone et al. [17] present
a method that evaluates the particle-based SLAM posterior
approximation using the Kullback–Leibler divergence to
decide between exploration and place revisiting. More
recently, Lehner et al. [32] integrate this same concept upon
a submap-based 6D ASLAM system. Similarly, Valencia
and Andrade-Cetto [33] evaluate the utility of exploration
and place revisiting sequences to choose the one that
minimises the overall map and path entropy. On the other
hand, Sadat et. al. [34] consider feature-richness during path
planning to direct the sensor of a drone towards high-density
areas and avoid visually-poor sections, as the latter can
increase the uncertainty in pose estimation and make SLAM
fail. The candidate viewpoints are also ranked based on their
surface normals and the viewing distance.

Concerning dimensionality, nowadays most of the mobile
robots are designed for 2D navigation, albeit there can
be slopes, stairs or elevators that make the robot operate
at different heights. In these situations, mobile systems
use multi-level maps [35] and alternate among different
layers, but the motion is still performed in a plane. Here,
robot poses, velocity commands, and trajectories include
only x and y positional values and rotations around the
z axis (yaw). Indeed, 3D motion calculations increase the
complexity of the problem considerably, and often it is
not necessary. In this line, Micro Aerial Vehicles (MAVs)
have been widely used in surveillance, search and rescue,
exploration and mapping applications. Their reduced size
and high manoeuvrability make them ideal for moving in
cluttered environments. The algorithms developed in this
area go beyond the limitations of ground robots, but there
are several interesting approaches to take into consideration.
For example, Kompis et al. [36] present an informed
sampling approach that takes advantage of surface frontiers
to sample viewpoints only where high information gain is
expected. Potential Next-Best-Views (NVBs) are sampled
from the MAV’s configuration space using surface frontiers,
and ranked by their expected information gain. Since the
computational power of the MAV is limited, they define a
heuristic to decide which proposed viewpoint to evaluate
next.

Davison and Murray [37], [38] implement a general
system for autonomous localisation using active vision,
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where a stereo head is controlled in real time during SLAM
to improve localisation accuracy. They head the cameras
towards certain areas to ensure that persistent features are
rematched, reducing themotion drift. To decide which feature
the vision system should target, they calculate uncertainties
for all visible features, and choose the one with the largest
uncertainty. Marchand and Chaumette [39] do consider
unknown space in their work, as they propose a 3D scene
reconstruction system based on an information gain function
that represents either the observation of a new object or
the certainty that a given region is object-free. Since the
reconstruction is performed via a camera mounted on a
robotic arm and it is limited to geometric primitives, they
avoid unreachable viewpoints and positions in the vicinity of
the robot joint limits. Isler et al. [40] go a step further, and
propose mounting the arm on a mobile platform to achieve
the complete 3D reconstruction of more complex objects.
They employ an information gain function that considers both
unknown voxels and their entropies, being these last ones
derived from the occupancy probability. Delmerico et al. [41]
also propose a set of volumetric information formulations
and evaluate them together with recent formulations in the
literature [42], [43].

Even though many more different methods have been
proposed for active sensor control [44], [45], [46], most of
them focus on the optimisation of the handled task once the
scans have been added to the map, without intervening in the
map building process itself. Instead, these approaches make
use of common occupancy grid maps, which may include
colour data or not, but they are not optimised for the posterior
information estimation of already seen areas. We believe
that the performance of 3D reconstruction algorithms is
dependant upon the data stored in themap and, for this reason,
our proposal includes additional information for uncertainty
calculations in the map creation step.

In this work, we present an ASLAM system that optimises
the pose of the sensor for the 3D reconstruction of an
environment, while a 2D algorithm controls the motion
of a mobile platform. A Rapidly-Exploring Random Tree
(RRT) [27] algorithm is used for the ground exploration
strategy, which calculates the optimal exploration destination
and sends it to the navigation unit. Then, the navigation
system calculates an obstacle-free trajectory and the mobile
platform executes it. Simultaneously, the pose of the camera
is optimised based on the state of the 3D map and the
position of the platform, in order to capture the most relevant
information possible in each iteration. The information
gathered from the camera is fed back into the 3D map. The
main contributions of this work are as follows:

1) A system to create a 3D model of the environment that
provides information about the quality of each mapped
area. This model serves as a metric to compare different
reconstruction approaches.

2) An active vision method that optimises the pose of a
camera to explore the environment and increase the
quality of the resulting map.

III. PROPOSED APPROACH
Our approach makes use of active perception to search for
viewpoints of the sensor that reveal areas of the environment
that increase coverage together with the quality of the map
being built. Our method differs from the ones mentioned
above in the fact that it relies on the characteristics of
the acquisition sensor itself and their effect on the data
obtained to calculate the information gain and the NBV,
instead of considering the size of the area to be mapped or
the localisation uncertainty. In addition, it is proposed as a
complementary method to an exploration process, optimising
the perception capabilities of the robot used, and not a
complete ASLAM method. The proposed approach is based
on its own octree-like structure, which makes it independent
and compatible with other mapping and navigation methods.
Broadly, the system is an iterative algorithm that: captures a
frame from the sensor; updates the 3D model according to
it; calculates the next best sensor pose; moves the sensor;
and repeats the process again capturing a frame from the
new pose. In the generated 3D model, an uncertainty value
together with spatial and occupancy information are stored
for each point. In the next two sections, the uncertainty
estimation and the algorithm itself are explained in detail.

A. UNCERTAINTY ESTIMATION
As we want the system to consider not only the completeness
or coverage of the map but also the quality, we need a value
that represents this aspect. It is hard to define or measure
the quality of a map when there is no ground truth to
compare it with, that is what happens most of the times in
robotic mapping scenarios. In the absence of this option, the
quality of a map can be seen as the reliability of its data.
As uncertainty is a common term in mobile robotics and it
is directly related to the reliability, it has been adopted for the
representation built in our method.

The uncertainty map presented here is an octree-based [47]
representation. Octrees are a tree data structures where each
branch node has eight children, as it represents an octant. Tree
nodes store information regarding the space they represent.
In our proposal, leaf nodes are voxels of the size of the
resolution of the map, and they include uncertainty values
u which are calculated as a function of the pose they have
been seen from. Each time a cell is seen, the new value
and the stored are combined to update the uncertainty value
accordingly. The u value of non-leaf nodes is thus inferred
from leaf nodes. Every 3D point observed can be tracked,
whether it represents free or occupied space.

We consider that points in the scene at a certain distance
are more likely to be correctly captured by the sensor than
elements that are closer or farther from it. Cameras are
configured to see optimally a specific plane in the scene,
called the focal plane. The closer an object is to the focal
plane, the sharper it is seen. This attribute is degraded
gradually until an element is too far from this location and
it is completely blurred. The depth of field is then defined
as the distance between the closest and farthest objects in a
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photograph that appear to be acceptably sharp [48]. This fact
is modelled on our uncertainty map in two ways. On the one
hand, from the set of points P captured by the sensor, only
the points p whose Euclidean distance to the lens d(p) falls
in the range [Dmin, . . . ,Dmax] are added to the map M .
Hence, elements that lay outside the depth of field are not
taken into account. Therefore, being p(x, y, z) a point whose
spacial coordinates in the Euclidean space are x, y and z:

p(x, y, z) ∈ M ⇐⇒ p(x, y, z) ∈ P :

{Dmin < d(p) < Dmax | d(p) = ||
−−−−→
(x, y, z)||2}

On the other hand, the distance d(p,F) from each gathered
point p(x, y, z) to the focal plane F is measured as the
difference between the distance from the lens to the point d(p)
and the distance from the lens to the focal plane DF :

d(p,F) = |d(p) − DF |, (1)

Finally, the distance-based uncertainty of each point p in
M is estimated according to d(p,F), as shown in Equation 2.

ud (p,F) = 1 −
2

1 + ed(p,F)
(2)

Equation 2 is a sigmoid function that represents the gradual
degradation of the sharpness of the objects as explained
above. As it only receives positives values, it does not have
its characteristic ‘‘S’’-shaped curve, as shown in Figure 1.

FIGURE 1. Plot of the function used to calculate the uncertainty of a point
based on the distance to the lens in metres, being the distance to the
focal plane DF = 1.

Similarly, we assume that, given the FOV of a lens,
points that lay on the boundary of the frame have a higher
uncertainty due to the inherent distortion of the lens [49].
Although there are methods such as camera calibration to
correct this deviation, they never reduce the error to zero.
To represent this phenomenon, we define a function that
calculates an uncertainty value for each point p(x, y, z) ∈

P, with respect to the sensor origin. The angles the point
p(x, y, z) forms with the horizontal plane XZ and vertical
plane YZ , αh and αv respectively, are calculated as follows:

αh = arctan(
x
z
) (3)

αv = arctan(
y
z
) (4)

Besides, the horizontal FOV h and vertical FOV v angles
determined by the sensor itself are required. They are used to
perform the unity-based normalisation and bring the angles
from Equations 3 and 4 into the range [0, 1]:

α′
h = |

αh

FOV h
| (5)

α′
v = |

αv

FOV v
| (6)

Then, the angle-based uncertainty uα value of a point is the
average between α′

h and α′
v:

uα(p) =
α′
h + α′

v

2
(7)

Lastly, distance-based uncertainty ud obtained from Equa-
tion 2 and angle-based uncertainty uα from Equation 7 are
combined into a unique u value, as shown in Equation 8.

u(p) =
ud + uα

2
(8)

u is the final uncertainty estimation calculated for each
point of a scan. Figure 2 shows the impact one function or
another has in the uncertainty map built.

Nevertheless, once this value is calculated for an input
point, it must be checked whether it is already mapped or not.
If not, it is considered as a new unmapped point and it is added
to the octree directly with its u value. This action increases the
mapped area, i.e. the coverage. On the contrary, if the input
point is already known and it has an uncertainty value from a
previous iteration, it must be updated instead, enhancing the
map quality. Here, we propose to store the uncertainty value
that corresponds to the best viewpoint from which a certain
point has been captured. That is, if a voxel v is captured for
the t-th time, its new uncertainty ut (v) value is the minimum
between the value u(vt ) calculated with Equation 8 and the
uncertainty value stored u(vt−1) (resultant from the previous
iteration):

ut (v) = min(u(vt ), u(vt−1) (9)

B. CAMERA POSE OPTIMISATION
In this section, the camera pose optimisation algorithm is
described, which is in charge of estimating the optimal
viewpoint of the camera for a certain state of the uncertainty
map. Given a partially completed map and a position on the
mobile platform, the optimal pose of the sensor is calculated.
The final objective is to maximise the knowledge about the
environment. Mapping new areas and improving the reliance
of already acquired data can both be considered as increasing
the knowledge about the environment, and the uncertainty do
represent both aspects. Thus, we can assume that reducing the
uncertainty of the map implies progressing towards the final
objective.

As the system has no prior knowledge about the envi-
ronment being mapped, it only stores information about
the occupancy value of visited points (nodes), but not
about the quality of the exploration itself. So, a new
measure is needed to assess if a map is better than another:
information.

Information attempts to quantify the amount of knowledge
we have about an environment, and it is calculated with the
uncertainty value we have already estimated. As Equation 8
maps the inputs into the range (0, 1), it is consistent to
say that the uncertainty value that would correspond to
unknown cells is 1. Accordingly, their information value can
be quantified as 0. Since the information value cannot be
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FIGURE 2. Initialisation of the uncertainty map in the same environment for each of the three uncertainty estimation Functions 2, 8 and 7. A reduced HSV
colour gradient is used to represent uncertainty values, where the most uncertain voxels are in red and the most reliable ones in green.

negative, the result from the information function i must
be inversely proportional to the result of the uncertainty
function u. Besides, a cell with uncertainty 0 corresponds to
the maximum information. Thus, the information function i
must satisfy the following statements:

∀v ∈ M : i(v) ≥ 0

∀v,w ∈ M : {u(v) ≥ u(w) H⇒ i(v) ≤ i(w)}

∀v,w ∈ M : {u(v) = 0 H⇒ ∄w | i(w) > i(v)}

That being said, the result of the information function i is
a growing function from 0 to a maximum, as the uncertainty
for the same element decreases from 1 to 0. Taking this into
account, the proposed information value i for a single cell v
is:

i(v) = k − u(v) | k > 1 (10)

k must be greater than 1 to avoid having a negative
information value. Considering what information represents,
we propose calculating the information of a set of cells or map
simply adding the information value of each of the cells inside
it. Besides, we present a function whose maximum is the least
possible maximum, because greater values would favour the
amount of cells in the map. We consider that, at this point, the
uncertainty of each cell itself should receive more attention,
and that the system can be biased towards exploration in
the next-best view selection process. Hence, the information
value of a set A is calculated according to Equation 11.

I (A) =

∑
v∈A

(1 − u(v)) (11)

The most relevant aspect about the information value
of a map is that it allows the comparison between two
maps of the same environment in different phases. At any
moment t , the system has a particular map Mt built and
the camera has a specific pose qt . The objective is to move
the sensor to a pose qt+1 such that the map Mt+1 provides
the maximum information possible based on the state of
the system in the previous step t . In other words, the pose
optimisation algorithm has to maximise the information
gain from one iteration to another, moving the sensor

accordingly. In addition, the information value I obtained
from Equation 11 can also be used to compare maps that, for
example, have been built with different approaches.

The challenge here is how to predict the information gain
of an unknown point. If a point is already mapped and, thus,
its x, y, z coordinates are known, if that point would fall
in the sensor’s FOV for any of its possible poses can be
calculated, together with the exact position at which that point
would be seen. Besides, in most of the environments, it is
done with a very high accuracy. Using these inputs in the
functions presented above, the system can predict how the
uncertainty value stored in each cell would be updated and
the information gain it would provide, if any. In this case,
the information gain of that cell g(v) would be the difference
between its actual information value i(vt ) and the hypothetical
future value i(vt+1). However, when the camera’s FOV
includes unmapped points, the future estimated information
value cannot be calculated mathematically. It is impossible
to ensure where the ray would find an object, adding the
corresponding cell, and setting it as occupied. To tackle this
problem, we propose a ‘‘positive’’ approach, as we imagine
that every unknown point will be occupied. The information
provided by an unknown point is quantified as 0, i.e., i(vt ) =

0, and, with the previous assumption, its information in
the potential next iteration i(vt+1) is calculated as for any
already mapped cell. In summary, the information gain of an
unknown point is equal to the information value it has when
it is occupied. Mathematically,

g(v) =

{
i(vt+1) − i(vt ) if i(vt+1) > i(vt )
0 otherwise

(12)

Again, being coherent with Equation 11, the information
gain of a set of cells A is the sum of the gain of every element
inside it:

G(A) =

∑
v∈A

g(v) (13)

Once the information gain provided by any future camera
pose can be estimated, it is possible to optimise it. The
optimisation algorithm simulates the FOV of each pose q
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of all the viable poses Q of the sensor, calculating the
information gain for each of them. Then, the best one is
selected and the sensor is moved accordingly. Taking all
calculations into account, the pseudocode of the whole sensor
pose optimisation process is shown in Algorithm 1.

Algorithm 1 Camera Pose Optimisation
Require: M : 3D uncertainty map
Require: SensorFOV : Sensor’s FOV specification
Require: SensorDOF : Sensor’s movement’s degrees of

freedom (DOF), ranges and velocities
1: while True do
2: qcurrent = GetCurrentPose()
3: Q = GetPossiblePoses(qcurrent , SensorDOF, t)
4: gmax = 0
5: qopt = qcurrent
6: for each q ∈ Q do
7: gq = EstimateGain(q, SensorFOV , M )
8: if gq > gmax then
9: gmax = gq

10: qopt = q
11: end if
12: end for
13: if qopt ̸= qcurrent then
14: MoveSensor(qopt )
15: end if
16: end while

The proposed camera optimisation process has two key
functions that form the core of the algorithm, as they
determine the poses to be considered in each iteration and
the value - or ranking - assigned to each of them, in order
to finally choose the one to be adopted by the sensor.
These functions are GetPossiblePoses and EstimateGain
(Line 3 and 7 of Algorithm 1, respectively).

1) GetPossiblePoses
The candidate optimisation poses in each iteration are
calculated based on: the sensor’s current position, qcurrent ;
its degrees of freedom (DOF), ranges and velocity limits,
SensorDOF ; and a t value, which determines the maximum
time the sensor can be in motion between one pose and
another, i.e., the maximum time it can take to reach the
estimated optimal pose. While the first two parameters are
strictly necessary to estimate new poses, the t parameter
is added for two main reasons. First, since the platform
continues navigating while the sensor motion calculations are
performed, the sensor pose selected with respect to the world
and the one reached may differ. This difference will be larger
the longer the time between sensor poses and the higher the
platform speed. Thus, a balance between these two values
needs to be maintained. Second, larger values of t imply more
possible poses to consider, leading to increased computation
time. Note that the elapsed time between consecutive sensor
poses is the sum of the computation time plus the sensor
movement time, and the t value affects both, contributing

to reduce the difference between the initial state of the
environment and the final state of each iteration. In this line,
there is also a configuration parameter qstep that determines
the step between poses, which serves not only to discretise
the sensor positions, but also to modify the number of them
and, consequently, the computational cost of the optimisation.
The pseudocode of the complete procedure is shown in
Algorithm 2.

Algorithm 2 GetPossiblePoses
Require: q : Relative pose of the sensor
Require: SensorDOF : Sensor’s movement’s degrees of

freedom (DOF), ranges and velocities
Require: t : Maximum movement time (0 = no limit)
1: Q = {q}
2: if t = 0 then
3: qranges = SensorDOF ranges
4: else
5: qranges = GetRanges(q, SensorDOF, t)
6: end if
7: n = GetNumberOfPoses(qranges, qstep)
8: for i in [1..n] do
9: qcandidate = GetPose(qcurrent , qstep, i)
10: add qcandidate to Q
11: end for
12: return Q

2) EstimateGain
Each of the candidate sensor poses Q must be evaluated
in order to estimate the optimal one. To this end, a ray-
tracing technique is used to predict what the camera would
capture in each of the poses. Based on the FOV, range
and resolution of the sensor, a virtual ray is cast from the
pose of the sensor through each pixel to determine what is
visible along the ray in the 3D scene. If the ray reaches the
maximum range without hitting any non-free voxel, a gain
value of 0 is assigned to it. On the contrary, if it hits a non-free
voxel, either occupied (mapped) or unknown (unmapped), the
corresponding gain is calculated according to Equation 12.
Then, the values of the rays with the same FOV are summed
up to get the information gain of the corresponding sensor
pose. Repeating this procedure for all the candidate poses,
as in Algorithm 1, the optimal pose is obtained, which is sent
to the sensor motion module. The optimisation algorithm has
no termination criteria, as it is intended to run in parallel and
independently of the rest of the mobile robot system.

IV. DESCRIPTION OF THE IMPLEMENTED SYSTEM
Our algorithm is implemented in the well-known Robot
Operating System (ROS) framework [50], which is accessible
to many other developers and users. Besides, it provides the
tools to integrate our functionalities into a robotic platform.

For the experiments presented in this paper, we have
integrated our algorithm in a mobile robot. More specifically,
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we have used a modified Turtlebot3 Waffle platform. It is
a small omnidirectional wheeled robot with a fixed RGB-D
camera at the front and a lidar in the centre with 360◦

vision. To test our camera optimisation algorithm correctly,
a telescopic arm with a RGB-D camera on top of it has been
added to the platform, which makes possible to pan, tilt,
and move the sensor along the vertical axis independently,
as shown in Figure 3. However, as the objective is to see the
viability of the proposed approach, in these first trials, the
optimisation has been limited to the pan movement, i.e., one
degree of freedom.

FIGURE 3. Turtlebot3 Waffle platform with a second RGB-D mobile
camera added on top of it. In the image, it is rotated 60◦ left, as it has a
360◦ pan range.

As our sensor pose optimisation algorithm attempts to be
modular and generic without being restricted to a certain
type of robot, it does not control the motion of the platform,
and publicly available ROS packages are used for this
purpose. Our 3D exploration is combined with a package that
implements an RRT-based 2D exploration algorithm [27],
which finds exploration goals in the horizontal plane and
sends them to the navigation system. These destinations
are managed by the ROS Navigation Stack, configured for
obstacle-free trajectory planning and execution. Thus, while
a mobile robot exploration system controls the motion of the
platform and builds a 2D map, our system optimises the pose
of the camera on the fly to build a dense 3D map. Although
both systems run in parallel, they are independent and there
is no communication between them.

With this configuration, where the camera pose optimi-
sation algorithm does not take into account the motion of
the robot for the camera poses, an adequate t value must be
set as it has a significant impact. Essentially, it reduces the
main issues of the lack of coordination between platform and
camera motion. As the sensor is attached to the platform,
when the latter moves, the former moves implicitly in the
same direction. As a consequence, the sensor is not in the
global pose the optimisation algorithm decided to move to.
This effect may be exacerbated when the platform moves
faster or the system needs more time to estimate the optimal

camera pose. Setting a low t value makes the transformations
between consecutive poses smaller and their overlapping
regions larger, which eases the 3D map merging [51]. If the
same camera is used for localisation, it also improves position
estimation [52].

FIGURE 4. Complete ASLAM system’s diagram implemented in the mobile
robot.

As described before, the uncertainty map simply gets the
colour image and the point cloud provided by the top RGB-D
camera and creates a 3D octomap accordingly. As mentioned
above, the implementation has been done on the standard
octomap implementation, and a detailed explanation can be
found in the original paper [53]. Apart from occupancy and
colour, our version adds the possibility to store uncertainty
values with the functions described before. We have also
implemented the corresponding Rviz plugins to visualise
these values.1

In brief, the implementation for testing consists of three
independent systems that live together in the same mobile
robot: 2D mapping, uncertainty 3D mapping and navigation.
They gather information of the environment from different
sensors and may communicate with each other using ROS.
Besides, they can send commands to the platform and control
its motion, which closes the cycle and enables a fully
autonomous behaviour. Figure 4 shows a general overview
of the logic of the system and its communications.

V. SYSTEM EVALUATION
The system has been tested in diverse simulated environments
where the size, the number of elements and the level of detail
of these vary. The models used for the experiments are the
following:

• ‘‘simple house’’. It is provided by the Robotis group in
the official manual of the TurtleBot3 platform, in the
simulation section (https://emanual.robotis.com/docs/en/
platform/turtlebot3/simulation/). It contains six rooms,
with a few basic elements, covering a total area of
15 × 10 m. It has been chosen for its simplicity.

1The code of the optimisation algorithm and the octomap related function-
alities is available online here: https://github.com/fundaciontekniker/aslam-
system
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• ‘‘apartment’’. It is also crated by the AWS Robotics
team, and it is a very detailed and realistic representation
of an apartment of 19 × 11 m. It is available
here: https://github.com/aws-robotics/aws-robomaker-
small-house-world. It offers a hint of how the mapping
system would perform in a domestic environment.

• ‘‘bookstore’’. It is a 3D model of a bookstore developed
by the AWS Robotics team. It has many and very
detailed elements, such as furniture and books, which
makes it a suitable environment to test a 3D mapping
system. It can be acquired from: https://github.com/aws-
robotics/aws-robomaker-bookstore-world. The size of
the bookstore is 15 × 14 m.

FIGURE 5. ‘‘Bookstore’’ test environment.

• ‘‘cafe’’. It is a spacious area of 25 × 10 m, with
detailed elements along the walls but just a few tables
in the middle. This configuration allows the robot to
build the 2D map without navigating too much, because
the lidar covers nearly all the area from any location.
As the FoV of the camera has a reduced scope, the
objective of the tests in this environment is to check
if our system makes a significant difference in the
resulting 3D map in this kind of scenarios. Indeed, the
range of lidar for 2D mapping is set to 10 m with a
360◦ view, while the camera has a 4 m range and a
horizontal angle of 59◦. Besides, two people are walking
through the cafe, adding dynamism to the problem.
Here, the behaviour of the system is also evaluated in the
presence of dynamic elements. The ‘‘cafe’’ model can
be obtained from: https://automaticaddison.com/how-
to-load-a-world-file-into-gazebo-ros-2/.

FIGURE 6. ‘‘Cafe’’ test environment.

• ‘‘warehouse’’. It is the usual warehouse of the majority
of the factories nowadays. It is another model created
by the AWS Robotics team (https://github.com/aws-
robotics/aws-robomaker-small-warehouse-world), and
it is useful to make an idea of the result the system
may obtain in an industrial use case. Its dimensions are
14 × 21 m.

• ‘‘willowgarage’’. It is a model available in Gazebo
simulator itself by default, already used inmany research
works. It represents a set of rooms in an office-like area
without objects, just walls. It is the largest environment
tested, with an area of 65×45m. As our algorithm solves
a local optimisation problem, the size of the environment
does not increase the complexity of each iteration. But,
it does the size of the 3D uncertaintymap being built. It is
relevant to test our system in such a large area to see if the
results obtained in small environments are extrapolable.

FIGURE 7. ‘‘Willowgarage’’ test environment.

Note that all the models used in the tests presented here are
publicly available and compatible with the Gazebo simulator.
Besides, they are all indoor environments where the mobile
platform navigates through a unique flat floor.

In all the environments, the RGB-D sensor simulated is
similar to the Inter RealSense R200 camera, with a vertical
FOV of 46◦, horizontal FOV of 59◦, a maximum range of
4 m and a 480 × 360 depth resolution. On the other hand,
the 360◦ lidar is simulated with a range of 100 m and 0.5◦ of
horizontal resolution, which provides 720 points in each scan.
Nevertheless, the 2D mapping system is limited to a range of
4 m in all the environments but in ‘‘willowgarage’’, where it
is limited to 10 m. Larger ranges increase the computational
cost of the 2D exploration system, however, 4 m is too low
for this environment, because many times, the sensor does not
find any obstacles, the localisation has nothing to match, and
the robot gets lost. This beam cropping is done for efficiency
purposes, as there are no such large free obstacle distances in
the selected scenarios.

A. EXPERIMENTAL PROCEDURE
The system has been compared with two different exploration
methods from the literature, one based on 2D [27] and another
one that considers the complete 3D space [54], [55]. Both
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TABLE 1. Comparison of the effectiveness of the obtained 3D maps considering all tests. The metrics shown are: number of voxels, increase in the
number of voxels compared to the 2D test in percentage terms, information provided, information gain compared to the 2D test, information gain
compared to 2D test in percentage terms.

algorithms are based on RRT mainly because it is one of the
best performing techniques in exploration. We believe that,
by using methods with the same basis, our algorithm gets
more isolated and its effect is more clearly observable. The
tests are as follows:

• 2D. In each environment, the 2D autonomous explo-
ration is performed first using a strategy based on
the use of multiple RRTs, proposed by Umari and
Mukhopadhyay.2 It calculates the trajectories to explore
the entire area and builds the corresponding map using a
360◦ lidar. During this phase, the RGB-D camera builds
a 3D uncertainty map, while the robot moves through the
environment keeping the camera pose constant. While
exploration is performed, the entire trajectory of the
robot is stored in order to replicate it in subsequent
tests. In this way, the robot can keep the same pose and
velocities in the same timestamps among different tests
of the same environment. This allows to compare under
equal conditions this first 3D map with results where the
3D camera pose optimisation is performed.

• 2D+optimisation. After a 2D exploration where a
3D map is built keeping the camera static, the same
process is repeated with our pose optimisation algorithm
running. As the trajectory executed in these tests is the
one recorded in the previous case, the time needed to
perform the exploration is exactly the same. However,

2https://github.com/hasauino/rrt_exploration

as the pose of the camera with respect to the robot is
continuously modified, the 3D map obtained differs.
This type of test has been performed with three different
configurations, where the t value varies between 0.2 s,
0.5 s and 1 s.

• 3D. Finally, the algorithm proposed by the Robust Field
Autonomy Lab at Stevens Institute of Technology3

that performs complete 3D exploration of complex
environments by means of a ground mobile robot is
executed in the same environment. As this system
calculates the trajectories of the mobile platform itself
to perform the 3D exploration, its positions may be
different from those achieved in the rest of the tests.
In this last case, as in the first 2D exploration, the camera
is static during execution.

In all tests, the 2D map for trajectory planning and
navigation is built using OpenSLAM’s GMapping algorithm,
which is a Rao-Blackwellized particle filer to learn grid
maps from laser range data [56]. These five procedures - one
2D exploration, three 2D exploration with our optimisation,
one 3D exploration - are repeated three times in all the six
environments described above, with three different starting
points in each of them, making a total of 90 experiments.
At the end of each of them, the time needed, the number of
voxels of the 3D map and the total information provided by

3https://github.com/RobustFieldAutonomyLab/turtlebot_exploration_3d
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TABLE 2. Efficiency comparison of the obtained 3D maps considering all tests. The metrics shown are: duration of the exploration, increase in the time
needed compared to 2D test in percentage terms, average number of mapped voxels per second, average information mapped per second.

this one are calculated. The numbers shown in this article are
average values.

B. RESULTS
Table 1 shows the comparison of 3D mapping results with
the three different systems explained before. As can be
seen, there is an improvement in the obtained 3D map by
performing a 2D exploration with our optimisation algorithm
compared to not using it. Our approach has been tested
with three different values of t , and all three configurations
help to build a denser and richer 3D model of any of the
environments. Note that the value t limits the maximum time
the sensor has to move from one pose to the next in each
iteration. Thus, greater values evaluate more pose candidates,
increasing the optimisation possibilities, at the expense of
higher computational cost. For this reason, larger values t
generally get slightly better results in the tests. Although,
based on the experiments, the optimal t value seems to be
relative to the environment being explored.

Surprisingly, in some cases, the combination of a 2D
exploration with our camera pose optimisation algorithm gets
better results than the 3D exploration system. This is the case
of the tests carried out in ‘‘warehouse’’ and ‘‘apartment’’
environments, obtaining a map with more voxels in the
former and one with both more voxels and information in the
latter (see Figure 9). It is worth mentioning that in some tests,
the 3D exploration algorithm obtains worse result than even

FIGURE 8. ‘‘Cafe’’ environment mapping result after 2D basic exploration
(left), combination of 2D exploration and camera pose optimisation with
t = 0.5 (middle) and 3D exploration (right). The 3D uncertainty map is
shown with colours, while the 2D map is in greyscale. A reduced HSV
colour gradient is used to represent uncertainty values, where the most
uncertain voxels are in red and the most reliable ones in green.

the basic 2D exploration because it does not visit some narrow
areas where the 2D algorithm does and, indeed, the robot is
able tomap them.On the contrary, in the ‘‘cafe’’ environment,
the 2D algorithm is able to map the entire environment with a
short trajectory. As a consequence, the camera can only gather
information from a small proportion of the environment.
As the 3D exploration system calculates its own trajectory
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FIGURE 9. ‘‘Apartment’’ environment (top left), mapping result after 2D basic exploration (top right), combination of 2D
exploration and camera pose optimisation with t = 0.5 (bottom left) and 3D exploration (bottom right). The 3D uncertainty
map is shown with colours, while the 2D map is in greyscale. A reduced HSV colour gradient is used to represent uncertainty
values, where the most uncertain voxels are in red and the most reliable ones in green.

for this purpose, it maps the whole area and there is a huge
improvement in the resulting map. Figure 8 shows the 3D
uncertainty maps obtained with the three different systems
in the ‘‘cafe’’ test environment.

In 5 of the 6 environments, the map with the largest amount
of information is achieved with the 3D scanning system,
which is quite logical as it is the only procedure of those
evaluated here that focuses entirely on that purpose. While
the resulting model may differ from one scenario to another,
the 3D exploration needs more time to complete the mapping
process in all the tests, with an average duration of ten
times the duration of the other exploration processes. So,
although this system achieves the best result in most cases,
the difference is not proportional to the time needed to do so.
In this aspect, the combination of 2D exploration with our
camera pose optimisation algorithm is the most efficient in
all cases, regardless of the value t used. Table 2 shows how
this procedure obtains the best ratio between both the number
of voxels and the information value of the resulting model
and the time needed to build it. More specifically, in the tests
carried out, t values of 0.5 or 1.0 are those that achieve the
optimal result.

VI. CONCLUSION AND FUTURE WORK
In this work, we present a system that associates uncertainty
values with the mapped points based on where they have been

captured, and an algorithm that exploits this information to
optimise the sensor pose for exploration. We use an octree-
based 3D uncertainty map to estimate the camera’s NBV
online, which is built during motion. Adding this algorithm
to a 2D exploration, a denser and richer model is acquired,
without requiring additional time for it. Besides, according
to the measures used, it has demonstrated to obtain similar
of even better results to a complete 3D exploration system,
in a much shorter time. In accordance with these preliminary
results, the next immediate step is to test the algorithm in
a real scenario. The foresee of how the dynamic world and
other well known issues such as odometry drift, image frame
rate and lighting conditions, to mention some, can affect the
performance of the system remain as further work.

Beyond this, the system is highly configurable and
adaptable to different sensors. However, this first version of
the algorithm has been implemented with some limitations.

On the one hand, we want to add more degrees of
freedom to the camera pose optimisation. In these tests,
only the pan movement has been considered, but our goal
is to also optimise the tilt and height coordinates in every
iteration. However, due to the high computational cost of
such optimisation, we need to parallelise the code first taking
advantage of the increasing computing power of multicore
architectures and lowering the computational cost of the
optimisation process.
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On the other hand, we want to calculate the angle-based
uncertainty taking into account not only the direction of the
camera, but also the normal of the corresponding point or
surface. Besides, we would like to take into account the
trajectory that the robot is performing in order to calculate
the NBV. Our system runs independent from the robot motion
to make it more generic and because the robot used is
omnidirectional, it does not need to rotate to reach any
objective. Nevertheless, with other motion systems, there can
be a big divergence between the expected NBV and the point
of view achieved, and taking the trajectory into account and
going one step ahead would make a big difference in these
situations.

In addition, running 3D exploration after 2D exploration
with sensor pose optimisation finishes could be interesting.
In principle, the 3D map obtained should be similar to
running the 3D scan directly, but the time required for each
of them should not. We would like to evaluate whether
the combination performs the whole process in less time.
Moreover, using other functions to calculate the uncertainty
will lead to different results. Seeing how these affect not only
to the map, but also to the localisation, can guide us to a better
solution.
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