476 research outputs found

    Frequency splitting elimination and cross-coupling rejection of wireless power transfer to multiple dynamic receivers

    Get PDF
    Simultaneous power transfer to multiple receiver (Rx) system is one of the key advantages of wireless power transfer (WPT) system using magnetic resonance. However, determining the optimal condition to uniformly transfer the power to a selected Rx at high efficiency is the challenging task under the dynamic environment. The cross-coupling and frequency splitting are the dominant issues present in the multiple Rx dynamic WPT system. The existing analysis is performed by considering any one issue present in the system; on the other hand, the cross coupling and frequency splitting issues are interrelated in dynamic Rx’s, which requires a comprehensive design strategy by considering both the problems. This paper proposes an optimal design of multiple Rx WPT system, which can eliminate cross coupling, frequency splitting issues and increase the power transfer efficiency (PTE) of selected Rx. The cross-coupling rejection, uniform power transfer is performed by adding an additional relay coil and independent resonance frequency tuning with capacitive compensation to each Rx unit. The frequency splitting phenomena are eliminated using non-identical transmitter (Tx) and Rx coil structure which can maintain the coupling between the coil under the critical coupling limit. The mathematical analysis of the compensation capacitance calculation and optimal Tx coil size identification is performed for the four Rx WPT system. Finite element analysis and experimental investigation are carried out for the proposed design in static and dynamic conditions

    Wireless Power System Design for Maximum Efficiency

    Get PDF
    With the potential of cutting the last cord, wireless power transfer (WPT) using magnetic resonant coupling is gaining increasing popularity. Evolved from the inductive WPT techniques used in commercial products today, resonant WPT can transfer power over a longer distance with higher spatial freedom. Experimental prototypes have shown power transfer across a 2 m air gap [1], proving the viability of resonant WPT. Industrial consortia such as the AirFuel Alliance have standard specifications that enable wide application in consumer electronics.Despite the promises of high efficiency and long transfer distance, resonant WPT has significant challenges to overcome before the broad adoption will occur. One of the critical challenges is the how to design the complicated system. A WPT system consists of multiple parts: the transmitter coil and the compensation capacitor, the receiver coil and the compensation capacitor, and the power stages which consists of the inverter in the transmitter side and rectifier in the receiver side. This thesis investigates the WPT system design for maximum efficiency. It explores modeling and design of individual stages as well as the entire system design method. From the careful literature review, it is found that current design method of coils is insufficient for consumer electronics applications due to the strict sensitivity of size. The current power stage design method is insufficient or inaccurate for WPT applications where wide loading situations need to be considered. The system-level design method is based on assumptions that are not generally true due to the neglect of ZVS requirement and diode rectifier reactance. Instead, previously established techniques in coil design are applied to invent a new coil structure for reduced ESR while achieving a compact size. Previous ZVS inverter and diode rectifier topology are combined with waveform and circuit analysis to develop new accurate modeling and design method for a wide load range. From the resulting coil and converter models, an entire WPT system model and design methodology are proposed which highlights the design parameters selection and the design sequence. These techniques together contribute to a WPT system in terms of both high efficiency and compact size

    Review study of tunable intermediate-resonator for selective wireless power transfer system over various distances

    Get PDF
    This paper presents a selective magnetic resonant wireless power transfer (WPT) system, consisting of a transmitter (TX), a tunable intermediate-resonator, and a receiver (RX). In the proposed WPT system, the tunable intermediate-resonator can be either a relay resonator or an intermediate-RX by varying its variable resistance, demonstrating the flexibility of the intermediate resonator to be used for different topologies and applications. This flexibility will enable the proposed WPT system to transfer maximum energy efficiency to various distances between the TX and the RX, to longer distances for the WPT relay system and to shorter distances for the intermediate-RX system. In this case, the WPT intermediate-RX system has a larger power transfer efficiency than the WPT relay system.Postprint (published version

    Optimization of 8-Plate Multi-Resonant Coupling Structure Using Class-E\u3csup\u3e2\u3c/sup\u3e Based Capacitive-Wireless Power Transfer System

    Get PDF
    Capacitive-wireless power transfer (CPT) effectively charges battery-powered devices without a physical contact. It is an alternative to inductive-wireless power transfer (IPT) which is available in the present market. Compared with IPT, CPT offers flexibility in designing the coupling section. Because of its flexibility, CPT utilizes various coupling methods to enhance the coupling capacitance. Misalignment is a common issue in any WPT system. Among IPT and CPT, IPT has better performance for misalignments, but it requires bulk and expensive ferrite core to attain a high coupling coefficient. This work focuses on designing a CPT system to minimize the impact of misalignments. In this research, a novel 8-plate multi-resonant Class-E2 CPT system is developed to improve the performance of the CPT system for misalignments. The proposed CPT model expands the resonant frequency band, which results in better performance for misalignments compared with the regular 4-plate CPT system. The 8-plate coupling structure is designed to charge a 100 Ah drone battery. For this application, the coupling is formed when the drone lands on the capacitive- wireless charging pad. This work also presents the analysis of several dielectric materials with different dielectric constants. A well-designed capacitive coupler can effectively limit harmonics during the interaction between transmitter and receiver. Also, the effect of coupling plate shape is identified on the CPT system. The hardware tests indicate the round-shaped plates have better stability in coupling capacitance with the variation in frequency. The effect of misalignments is studied through the impedance tracking of the Class-E2 power converter. Impedance plots for 50 μH, and 100 μH resonant inductors are used to determine input current peak for each case. Additionally, hardware tests are performed to study the variation of input current and output voltage for a range of frequencies. The test results indicate the efficiency at optimal impedance point for a resonant inductor with 50 μH is 8% higher compared to the CPT with a 100 μH resonant inductor which highlights the effects of the resonant inductor on efficiency. The zero-voltage-switching (ZVS) limits are also identified for varying frequencies and duty cycles. Later in this research, the optimal design of the Class-E rectifier is identified to enhance the power transfer. Several cases were considered to investigate the impact of the secondary inductor on the output voltage and the ZVS property. Hardware tests validate that under optimal conditions the efficiency of the Class-E2 based CPT system improves by 18% compared with Ar \u3e\u3c 1. Further work presents the advantages of 8-plate multi-resonant coupling for misalignments. The proposed model has a simple design procedure which enhances the power flow from the inverter to the rectifier section. The hardware results of the proposed 8-plate multi-resonant coupling show an increase in efficiency to 88.5% for the 20.8 W test, which is 18% higher than regular 4-plate coupling. Because of the wider resonant frequency band [455- 485 kHz], compared with regular 4-plate coupling, the proposed design minimized the output voltage drop by 15% for 10% misalignment. Even for large misalignments, 8-plate improves the CPT performance by 40% compared with 4-plate coupling

    Wireless Power Transfer

    Get PDF
    Wireless power transfer techniques have been gaining researchers' and industry attention due to the increasing number of battery-powered devices, such as mobile computers, mobile phones, smart devices, intelligent sensors, mainly as a way to replace the standard cable charging, but also for powering battery-less equipment. The storage capacity of batteries is an extremely important element of how a device can be used. If we talk about battery-powered electronic equipment, the autonomy is one factor that may be essential in choosing a device or another, making the solution of remote powering very attractive. A distinction has to be made between the two forms of wireless power transmission, as seen in terms of how the transmitted energy is used at the receiving point: - Transmission of information or data, when it is essential for an amount of energy to reach the receiver to restore the transmitted information; - Transmission of electric energy in the form of electromagnetic field, when the energy transfer efficiency is essential, the power being used to energize the receiving equipment. The second form of energy transfer is the subject of this book

    Design of Capacitive Wireless Power Transfer Systems with Enhanced Power Density and Stray Field Shielding

    Get PDF
    Wireless power transfer is becoming relevant today because of its effectiveness and convenience. It has been employed into consumer electronics such as cellular charging and electric vehicle charging. In general, inductive wireless power transfer (IPT) is mostly used for WPT. IPT requires coils and power transfer enhancing material such as ferrite to transfer power. However, Capacitive wireless Power Transfer (CPT) appears as an alternative because it requires cost effective and light metal plate couplers. Among CPT couplers, Vertical (stacked) Four-Plate Coupler (V4PC) structure offers the advantage of higher input and output self-capacitances, rotational misalignment. Safety is one of the most important aspect of wireless power transfer. This thesis proposes a solution to minimize the leakage electric field of Vertical 4-Plate Couplers (V4PCs). It does so by finding the optimum value of circuit parameters. The effectiveness of the proposed solution is shown by experimental results

    Optimum Modelling Of Flux-pipe Resonant Coils For Static And Dynamic Bidirectional Wireless Power Transfer System Applicable To Electric Vehicles

    Get PDF
    Wireless power transfer (WPT) technology enables the transfer of electrical power from the electric grid to the electric vehicles across an airgap using electromagnetic fields with the help of wireless battery chargers. WPT technology addresses most problems associated with the “plug-in” method of charging EVs like vandalization, system power losses, and safety problems due to hanging cables and opened electrical contact in addition to the flexibility of charging electric vehicles while in a static or dynamic mode of operation. Significant research has been undertaken over the years in the development of efficient WPT topologies applicable to electric vehicles. A preliminary review of these revealed that the ferrite core WPT is a promising and efficient method of charging electric vehicles. The charging method is suitable for wireless charging of electric vehicles because of its low cost, high efficiency and high power output. This research proposed the use of the flux-pipe model as a suitable ferrite core, magnetic resonance coupled-based WPT system for the charging of the electric vehicle. The traditional flux-pipe model has some specific benefits which include high coupling coefficient, high misalignment tolerance and high efficiencies under misalignment conditions. However, it has a major drawback of low power output due to the generation of an equal amount of useful and non-useful fluxes. A set of governing equations guiding the performance output of a WPT system was presented. It was identified that the losses in the WPT system can be minimized by reducing the value of the maximum magnetic flux density while the power output and efficiency can be increased by increasing the value of the coupling factor and quality factor. Based on these findings, 3-D finite element modelling was employed for the optimal design and analysis of a typical flux-pipe model for higher coupling strength, high power output and low losses. The magnetic coupling performance of flux-pipe resonant coils was enhanced with an increased number of turns along the core length relative to increasing the width of each coil turns along the coil width. The high power transfer and efficiency was attained by splitting of the coil windings into two in order to reduce intrinsic coil resistances; copper sheet was employed as a shielding material in order to reduce the eddy current losses and finally, an air gap was introduced in the ferrite core in order to reduce the core losses and invariably increased the amount of excitation current required to drive the core into saturation. The proposed optimization methodology results in the creation of two models for application in static and dynamic charging operations respectively. From the simulation results presented, the model designed for static charging operations can transfer up to 11 kW of power across the airgap at a coil-to-coil efficiency of 99.12% while the model design for dynamic charging of electric vehicles can transfer up to 13 kW of power across the airgap at a coil-to-coil efficiency of 98.64% without exceeding the average limit specified for the exposure of human body to electromagnetic fields

    A PLL control for self-tuning of parallel wireless power transfer receivers utilizing switch-mode gyrator emulated inductors

    Get PDF
    In multiple receivers wireless power transfer (WPT) systems, it is preferable to retune the resonant frequency of every receiver to the transmitter operating frequency in front of frequency mismatches. This paper discusses a proposal for electronic tuning for WPT receivers by means of a variable active switch-mode inductance. The proposed method benefits from the gyrator concept to emulate a variable inductance. Instead of the conventional approach of linear amplifier based implementation of a gyrator, a switch-mode gyrator circuit is exploited for more efficient operation. Additionally, a PLL-like control is presented to enable self-tuning for the receiver resonant tank. Furthermore, a design-space characterization for the system dynamic behavior has been discussed to show the control robustness and the instabilities (including slow-scale and fast-scale chaotic instabilities) it may undergo.Peer ReviewedPostprint (published version

    8-Plate Multi-Resonant Coupling Using a Class-E\u3csup\u3e2\u3c/sup\u3e Power Converter For Misalignments in Capacitive Wireless Power Transfer

    Get PDF
    Misalignment is a common issue in wireless power transfer systems. It shifts the resonant frequency away from the operating frequency that affects the power flow and efficiency from the charging station to the load. This work proposes a novel capacitive wireless power transfer (CPT) using an 8-plate multi-resonant capacitive coupling to minimize the effect of misalignments. A single-active switch class-E2 power converter is utilized to achieve multi-resonance through the selection of different resonant inductors. Simulations show a widening of the resonant frequency band which offers better performance than a regular 4-plate capacitive coupling for misalignments. The hardware results of the 8-plate multi-resonant coupling show an efficiency of 88.5% for the 20.8 W test, which is 18.3% higher than that of the regular 4-plate coupling. Because of the wider resonant frequency band {455–485 kHz}, compared with the regular 4-plate coupling, the proposed design minimized the output voltage drop by 15% for a 10% misalignment. Even for large misalignments, the 8-plate performance improved by 40% compared with the 4-plate coupling
    corecore