15 research outputs found

    ARCH-COMP19 Category Report: Continuous and hybrid systems with nonlinear dynamics

    Get PDF
    We present the results of a friendly competition for formal verification of continuous and hybrid systems with nonlinear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In this year, 6 tools Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and JuliaReach (in alphabetic order) participated. They are applied to solve reachability analysis problems on four benchmark problems, one of them with hybrid dynamics. We do not rank the tools based on the results, but show the current status and discover the potential advantages of different tools

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Constrained Polynomial Zonotopes

    Full text link
    We introduce constrained polynomial zonotopes, a novel non-convex set representation that is closed under linear map, Minkowski sum, Cartesian product, convex hull, intersection, union, and quadratic as well as higher-order maps. We show that the computational complexity of the above-mentioned set operations for constrained polynomial zonotopes is at most polynomial in the representation size. The fact that constrained polynomial zonotopes are generalizations of zonotopes, polytopes, polynomial zonotopes, Taylor models, and ellipsoids, further substantiates the relevance of this new set representation. The conversion from other set representations to constrained polynomial zonotopes is at most polynomial with respect to the dimension

    Utilizing Dependencies to Obtain Subsets of Reachable Sets

    Full text link
    Reachability analysis, in general, is a fundamental method that supports formally-correct synthesis, robust model predictive control, set-based observers, fault detection, invariant computation, and conformance checking, to name but a few. In many of these applications, one requires to compute a reachable set starting within a previously computed reachable set. While it was previously required to re-compute the entire reachable set, we demonstrate that one can leverage the dependencies of states within the previously computed set. As a result, we almost instantly obtain an over-approximative subset of a previously computed reachable set by evaluating analytical maps. The advantages of our novel method are demonstrated for falsification of systems, optimization over reachable sets, and synthesizing safe maneuver automata. In all of these applications, the computation time is reduced significantly
    corecore