4 research outputs found

    Reachability problems for hierarchical piecewise constant derivative systems

    Get PDF
    In this paper, we investigate the computability and complexity of reachability problems for two-dimensional hierarchical piecewise constant derivative (HPCD) systems. The main interest in HPCDs stems from the fact that their reachability problem is on the border between decidability and undecidability, since it is equivalent to that of reachability for one-dimensional piecewise affine maps (PAMs) which is a long standing open problem. Understanding the most expressive hybrid system models that retain decidability for reachability has generated a great deal of interest over the past few years. In this paper, we show a restriction of HPCDs (called RHPCDs) which leads to the reachability problem becoming decidable. We then study which additional powers we must add to the RHPCD model to render it 1D PAM-equivalent. Finally, we show NP-hardness of reachability for nondeterministic RHPCDs

    Reachability problems for systems with linear dynamics

    Get PDF
    This thesis deals with reachability and freeness problems for systems with linear dynamics, including hybrid systems and matrix semigroups. Hybrid systems are a type of dynamical system that exhibit both continuous and discrete dynamic behaviour. Thus they are particularly useful in modelling practical real world systems which can both flow (continuous behaviour) and jump (discrete behaviour). Decision questions for matrix semigroups have attracted a great deal of attention in both the Mathematics and Theoretical Computer Science communities. They can also be used to model applications with only discrete components. For a computational model, the reachability problem asks whether we can reach a target point starting from an initial point, which is a natural question both in theoretical study and for real-world applications. By studying this problem and its variations, we shall prove in a formal mathematical sense that many problems are intractable or even unsolvable. Thus we know when such a problem appears in other areas like Biology, Physics or Chemistry, either the problem itself needs to be simplified, or it should by studied by approximation. In this thesis we concentrate on a specific hybrid system model, called an HPCD, and its variations. The objective of studying this model is twofold: to obtain the most expressive system for which reachability is algorithmically solvable and to explore the simplest system for which it is impossible to solve. For the solvable sub-cases, we shall also study whether reachability is in some sense easy or hard by determining which complexity classes the problem belongs to, such as P, NP(-hard) and PSPACE(-hard). Some undecidable results for matrix semigroups are also shown, which both strengthen our knowledge of the structure of matrix semigroups, and lead to some undecidability results for other models

    On the decidability and complexity of problems for restricted hierarchical hybrid systems

    Get PDF
    We study variants of a recently introduced hybrid system model, called a Hierarchical Piecewise Constant Derivative (HPCD). These variants (loosely called Restricted HPCDs) form a class of natural models with similarities to many other well known hybrid system models in the literature such as Stopwatch Automata, Rectangular Automata and PCDs. We study the complexity of reachability and mortality problems for variants of RHPCDs and show a variety of results, depending upon the allowed powers. These models form a useful tool for the study of the complexity of such problems for hybrid systems, due to their connections with existing models. We show that the reachability problem and the mortality problem are co-NP-hard for bounded 3-dimensional RHPCDs (3-RHPCDs). Reachability is shown to be in PSPACE, even for n-dimensional RHPCDs. We show that for an unbounded 3-RHPCD, the reachability and mortality problems become undecidable. For a nondeterministic variant of 2-RHPCDs, the reachability problem is shown to be PSPACE-complete

    Reachability Problems for Hierarchical Piecewise Constant Derivative Systems

    No full text
    In this paper, we investigate the computability and complexity of reachability problems for two-dimensional hierarchical piecewise constant derivative (HPCD) systems. The main interest in HPCDs stems from the fact that their reachability problem is on the border between decidability and undecidability, since it is equivalent to that of reachability for one-dimensional piecewise affine maps (PAMs) which is a long standing open problem. Understanding the most expressive hybrid system models that retain decidability for reachability has generated a great deal of interest over the past few years. In this paper, we show a restriction of HPCDs (called RHPCDs) which leads to the reachability problem becoming decidable. We then study which additional powers we must add to the RHPCD model to render it 1D PAM-equivalent. Finally, we show NP-hardness of reachability for nondeterministic RHPCDs
    corecore