3 research outputs found

    Visualizing the customization endeavor in product-based-evolving software product lines: a case of action design research

    Get PDF
    [EN] Software Product Lines (SPLs) aim at systematically reusing software assets, and deriving products (a.k.a., variants) out of those assets. However, it is not always possible to handle SPL evolution directly through these reusable assets. Time-to-market pressure, expedited bug fixes, or product specifics lead to the evolution to first happen at the product level, and to be later merged back into the SPL platform where the core assets reside. This is referred to as product-based evolution. In this scenario, deciding when and what should go into the next SPL release is far from trivial. Distinct questions arise. How much effort are developers spending on product customization? Which are the most customized core assets? To which extent is the core asset code being reused for a given product? We refer to this endeavor as Customization Analysis, i.e., understanding the functional increments in adjusting products from the last SPL platform release. The scale of the SPLs' code-base calls for customization analysis to be conducted through Visual Analytics tools. This work addresses the design principles for such tools through a joint effort between academia and industry, specifically, Danfoss Drives, a company division in charge of the P400 SPL. Accordingly, we adopt an Action Design Research approach where answers are sought by interacting with the practitioners in the studied situations. We contribute by providing informed goals for customization analysis as well as an intervention in terms of a visual analytics tool. We conclude by discussing to what extent this experience can be generalized to product-based evolving SPL organizations other than Danfoss Drives.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work is supported by the Spanish Ministry of Science, Innovation and Universities grant number RTI2018099818-B-I00 and MCIU-AEI TIN2017-90644-REDT (TASOVA). ONEKIN enjoys support from the program 'Grupos de Investigacion del Sistema Univesitario Vasco 2019-2021' under contract IT1235-19. Raul Medeiros enjoys a doctoral grant from the Spanish Ministry of Science and Innovation

    The state of adoption and the challenges of systematic variability management in industry

    Get PDF
    Handling large-scale software variability is still a challenge for many organizations. After decades of research on variability management concepts, many industrial organizations have introduced techniques known from research, but still lament that pure textbook approaches are not applicable or efficient. For instance, software product line engineering—an approach to systematically develop portfolios of products—is difficult to adopt given the high upfront investments; and even when adopted, organizations are challenged by evolving their complex product lines. Consequently, the research community now mainly focuses on re-engineering and evolution techniques for product lines; yet, understanding the current state of adoption and the industrial challenges for organizations is necessary to conceive effective techniques. In this multiple-case study, we analyze the current adoption of variability management techniques in twelve medium- to large-scale industrial cases in domains such as automotive, aerospace or railway systems. We identify the current state of variability management, emphasizing the techniques and concepts they adopted. We elicit the needs and challenges expressed for these cases, triangulated with results from a literature review. We believe our results help to understand the current state of adoption and shed light on gaps to address in industrial practice.This work is supported by Vinnova Sweden, Fond Unique Interminist®eriel (FUI) France, and the Swedish Research Council. Open access funding provided by University of Gothenbur

    Supporting the grow-and-prune model for evolving software product lines

    Get PDF
    207 p.Software Product Lines (SPLs) aim at supporting the development of a whole family of software products through a systematic reuse of shared assets. To this end, SPL development is separated into two interrelated processes: (1) domain engineering (DE), where the scope and variability of the system is defined and reusable core-assets are developed; and (2) application engineering (AE), where products are derived by selecting core assets and resolving variability. Evolution in SPLs is considered to be more challenging than in traditional systems, as both core-assets and products need to co-evolve. The so-called grow-and-prune model has proven great flexibility to incrementally evolve an SPL by letting the products grow, and later prune the product functionalities deemed useful by refactoring and merging them back to the reusable SPL core-asset base. This Thesis aims at supporting the grow-and-prune model as for initiating and enacting the pruning. Initiating the pruning requires SPL engineers to conduct customization analysis, i.e. analyzing how products have changed the core-assets. Customization analysis aims at identifying interesting product customizations to be ported to the core-asset base. However, existing tools do not fulfill engineers needs to conduct this practice. To address this issue, this Thesis elaborates on the SPL engineers' needs when conducting customization analysis, and proposes a data-warehouse approach to help SPL engineers on the analysis. Once the interesting customizations have been identified, the pruning needs to be enacted. This means that product code needs to be ported to the core-asset realm, while products are upgraded with newer functionalities and bug-fixes available in newer core-asset releases. Herein, synchronizing both parties through sync paths is required. However, the state of-the-art tools are not tailored to SPL sync paths, and this hinders synchronizing core-assets and products. To address this issue, this Thesis proposes to leverage existing Version Control Systems (i.e. git/Github) to provide sync operations as first-class construct
    corecore