6 research outputs found

    Around View Monitor(AVM) Based Visual SLAM For Autonomous Parking

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์ง€๋Šฅ์ •๋ณด์œตํ•ฉํ•™๊ณผ, 2021. 2. ๋ฐ•์žฌํฅ.์ž์œจ์ฃผ์ฐจ๋Š” ์ธ์‹, ๊ณ„ํš, ์ œ์–ด๋กœ ์ด๋ฃจ์–ด์ ธ์žˆ๋‹ค.์ž์œจ์ฃผ์ฐจ์˜ ์ธ์‹๊ณผ์ •๋™์•ˆ์— ์ž๋™์ฐจ๋Š” ์ž์‹ ์˜ ์œ„์น˜๋ฅผ ์•Œ์•„์•ผํ•˜๊ณ  ์ฃผ๋ณ€ํ™˜๊ฒฝ์„ ์ธ์ง€ํ• ์ˆ˜์žˆ์–ด์•ผํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์„ ๋™์‹œ์ ์œ„์น˜์ถ”์ •๋ฐ์ง€๋„์ƒ์„ฑ(SLAM)์ด๋ผ๊ณ ํ•œ๋‹ค. ๋งŽ์€ SLAM์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ์ฃผ๋ณ€ํ™˜๊ฒฝ์˜ ์ •ํ™•ํ•œ์ธ์‹์„ ์œ„ํ•ด ์ œ์•ˆ๋˜์–ด์™”๋‹ค. ํŠนํžˆ ๊ฐ’์‹ผ ์นด๋ฉ”๋ผ๋ฅผ ์ฃผ๋œ์„ผ์„œ๋กœ ์‚ฌ์šฉํ•˜๋Š” Visual SLAM์€ ์ž์œจ์ฃผํ–‰์ž๋™์ฐจ๋ฅผ ์œ„ํ•œ ์œ ๋งํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์—ฌ๊ฒจ์ ธ์™”๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ Visual SLAM์€ ์ „๋ฐฉ์นด๋ฉ”๋ผ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ ํ˜•ํƒœ์—์„œ, Visual SLAM์€๋Œ€๋ถ€๋ถ„์˜ ํ™˜๊ฒฝ์—์„œ ์ž˜ ์ž‘๋™ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ฃผ๋ณ€ํ™˜๊ฒฝ์— ํŠน์ง•์ ์ด ์ ๊ณ , ๊ฐ•ํ•œ๋น›์ด ์žˆ๋Š”ํ™˜๊ฒฝ์—์„œ๋Š” Visual SLAM์˜ ์„ฑ๋Šฅ์ด ํ•˜๋ฝํ•œ๋‹ค. ๋งŽ์€์ˆ˜์˜ ์ฃผ์ฐจ์žฅ๋“ค์€ ์•ผ์™ธ์— ์œ„์น˜ํ•ด์žˆ๊ณ , ์ฃผ์ฐจ์„ ๊ณผ ๊ฐ™์€ ๋‹จ์กฐ๋กœ์šด ํŠน์ง•์ ๋“ค๋งŒ์„ ๊ฐ€์ง€๊ณ ์žˆ๋‹ค. ์ฃผ์ฐจ์žฅ์—์„œ์˜ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์— ๋Œ€์ฒ˜ํ•˜๊ณ  Visual SLAM์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ด์—ฐ๊ตฌ์—์„œ๋Š” Around View Monitor(AVM)์„ ์ฃผ์š”์„ผ์„œ๋กœ ํ•˜๋Š” ์ƒˆ๋กœ์šด Visual SLAM ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. AVM ์‹œ์Šคํ…œ์—์„œ๋Š” Top View ์ด๋ฏธ์ง€๊ฐ€ ์ƒ์„ฑ๋˜๊ธฐ ๋•Œ๋ฌธ์— ํ‘ธ๋ฆฌ์—๋ณ€ํ™˜์€ AVM์ด๋ฏธ์ง€๋“ค๋กœ๋ถ€ํ„ฐ ๋™์ž‘์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•ด์„œ ์‚ฌ์šฉ๋œ๋‹ค. ๋™์ž‘์ •๋ณด๋ฅผ ์ถ”์ •ํ•˜๊ธฐ์œ„ํ•ด reprojection error๋˜๋Š”photometric error๋“ฑ์„ ๋น„์šฉํ•จ์ˆ˜๋กœ์จ ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ์กด์˜ Visual SLAM๊ณผ๋Š” ๋‹ฌ๋ฆฌ ํ‘ธ๋ฆฌ์—๋ณ€ํ™˜์€ ์–ด๋– ํ•œ ํŠน์ง•์ ๋งค์นญ์ด๋‚˜ ์ตœ์ ํ™”๊ณผ์ •์—†์ด,์ฐธ์กฐ๋˜๋Š” ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ๋Œ€์ƒ์ด๋˜๋Š” ์ด๋ฏธ์ง€๋กœ์˜ ๋™์ž‘์ •๋ณด๋ฅผ ๊ฐ„๋‹จํžˆ ์ถ”์ •ํ• ์ˆ˜์žˆ๋‹ค. ๋˜ํ•œ ์ž๋™์ฐจ์˜ ์œ„์น˜๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ทธ๋ฆฌ๊ณ  ๊ฐ•๊ฑดํ•˜๊ฒŒ ์ถ”์ •ํ•˜๊ธฐ์œ„ํ•ด์„œ landmark๋ฅผ ์ด์šฉํ•œ ์œ„์น˜์ถ”์ •๋ฐฉ๋ฒ•์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค.์ด ์—ฐ๊ตฌ์—์„œ landmark๋ผํ•จ์€ ์ฃผ์ฐจ์„ ๋ผ๋ฆฌ ๋งŒ๋‚˜๋Š” Cross point(๊ต์ฐจ์ )์„ ๋งํ•œ๋‹ค.์ด ์—ฐ๊ตฌ์—์„œ landmark๋ฅผ ์ด์šฉํ•œ ์œ„์น˜์ถ”์ •์€ ์„ธ๊ฐ€์ง€๋‹จ๊ณ„๋กœ ๋‚˜๋‰œ๋‹ค.์ฒซ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๊ต์ฐจ์ ์„ ํƒ์ƒ‰ํ•˜๋Š”๊ฒƒ์ด๋‹ค.์ฃผ๋กœ ์ด๋ฏธ์ง€์—์„œ ํŠน์ง•์ ์„ ์ฐพ๊ธฐ์œ„ํ•ด Image Segmentation๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ์กด์˜AVM๊ธฐ๋ฐ˜์˜ SLAM์—ฐ๊ตฌ์™€๋Š” ๋‹ฌ๋ฆฌ ์ด ์—ฐ๊ตฌ์—์„œ๋Š” Image Segmentation๋ณด๋‹ค ํ›ˆ๋ จ์ด ๋”์‰ฝ๊ณ  ๊ฐ„๋‹จํ•œ Object Detection๋„คํŠธ์›Œํฌ์ธYoloV3๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ต์ฐจ์ ์„ ํƒ์ƒ‰ํ•˜์˜€๋‹ค.๋‘๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” Data Association์ด๋‹ค. SLAM์—์„œ Data Association์€ ์ง€๋„์— ๋“ฑ๋ก๋˜์–ด ์žˆ๋Š” ํŠน์ง•์ ๊ณผ ํ˜„์žฌ ๊ด€์ฐฐ๋œ ํŠน์ง•์ ์„ ์„œ๋กœ ์—ฐ๊ด€์‹œํ‚ค๋Š” ์ž‘์—…์ด๋‹ค. Deep SORT๊ฐ€ ํ˜„์žฌ ๊ด€์ดฌ๋œ ํŠน์ง•์ ์„์ถ”์ ํ•˜๊ธฐ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ์ง€๋งŒ, Deep SORT๋ฅผ ์‚ฌ์šฉํ• ๋•Œ์—๋Š” ์ถ”์ ๋˜๋Š” ํŠน์ง•์ ์˜ ID๊ฐ€ ๋น„๊ต์  ์ž์ฃผ ๋ฐ”๋€Œ๋Š” ํ˜„์ƒ์ด ์ผ์–ด๋‚˜์„œ ํ‘ธ๋ฆฌ์—๋ณ€ํ™˜์œผ๋กœ๋ถ€ํ„ฐ์˜ ๋™์ž‘์ •๋ณด์™€ ํ˜„์žฌ ๊ด€์ฐฐ๋œ ํŠน์ง•์ ์ •๋ณด๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ Nearest Neighbor๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์ถ”๊ฐ€์ ์ธ Data Association์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ํ‘ธ๋ฆฌ์—๋ณ€ํ™˜์œผ๋กœ๋ถ€ํ„ฐ์˜ ๋™์ž‘์ •๋ณด๋Š” ๋น„๊ต์  ์ •ํ™•ํ•˜๊ณ , ๊ต์ฐจ์ ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋Š” ๋ฉ€๊ธฐ๋•Œ๋ฌธ์—Data Association์˜ ์ •ํ™•๋„๋Š” Deep SORT๋งŒ ์‚ฌ์šฉํ–ˆ์„๋•Œ๋ณด๋‹ค ์ •ํ™•ํ•ด์กŒ๋‹ค.์ดํ›„์— ๋งˆ์ง€๋ง‰๋‹จ๊ณ„์—์„œ๋Š” ์ผ์ •๊ฐœ์ˆ˜์ด์ƒ์˜ data association์ด ์ด๋ฃจ์–ด์กŒ์„๋•Œ, Singular Value Decomposition์„ ์ด์šฉํ•˜์—ฌ ์ƒˆ๋กญ๊ฒŒ ๋™์ž‘์ •๋ณด๊ฐ€ ์ถ”์ •๋œ๋‹ค. ๊ธฐ์กด์˜Visual SLAM๊ณผ ์ œ์•ˆ๋œ SLAM์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๊ธฐ์œ„ํ•ด์„œ ์ฃผ์ฐจ์žฅ์—์„œ ์‹คํ—˜์„์ง„ํ–‰ํ•˜์˜€๊ณ , LOAM์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋น„๊ต๋ฅผ์œ„ํ•œ Groundtruth๋กœ์„œ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค.Autonomous parking consists of perception, planning, control. During perception procedure in autonomous parking, vehicle should know its location and perceive surrounding environment. This is called Simultaeneous Localization And Mapping (SLAM). Many SLAM algorithms have been proposed for accurate perception of environment. Especially, Visual SLAM, which uses a cheap camera as a main sensor of SLAM algorithm, has been considered as promising algorithm for autonomous vehicle. Most of Visual SLAM use front camera setting. In this camera setting, Visual SLAM works well for most of environments. However, performance of the algorithm gets worse when environment has few features or strong sunlight condition. Most of parking lots are located outdoor and have monotonous features like parking lines, cars. To address these problems and improve accuracy of Visual SLAM for autonomous parking, this paper proposes new Visual SLAM algorithm, which uses Around View Monitor(AVM) as a main sensor. As top-view images are generated in AVM system, fourier transform is used to extract motion information from the AVM images. Compared to traditional visual motion tracking methods which use reprojection error or photometric error as a cost function to estimate motion, fourier transform can simply estimate motion from reference AVM image to target AVM image without any optimization or feature matching. Also, landmark based localization is used to estimate vehicle's motion more robustly and accurately. In this paper, landmark means cross points on parking lines. Landmark based localization in this paper consists of three procedure. First one is cross point detection. Cross points are detected using YoloV3. Compared to other AVM based SLAM methods, which use Image segmentation to detect features in parking lot, training procedure of the neural network is simpler and easier. Second one is data association. Data association means associating procedure among features in map and currently observed features in SLAM literature. Deep SORT is used to track features using currently observed cross points. As re-identification of tracked features frequently occurs when using Deep SORT, additional data association is done using current motion estimation from image registration and currently observed cross points in Nearest Neighbor literature. As motion estimation accuracy from reference image to target image is considerably accurate and distance between cross points is far, data association accuracy is improved compared to the data association without this additional association procedure. After this data association, if the number of associated features is larger than one, motion is newly estimated using Singular Value Decomposition and positions of associated features. To demonstrate improvement of proposed SLAM algorithm compared to other Visual SLAM algorithms, experiments in parking lot are suggested and compared with traditional Visual SLAM algorithms. Also, Lidar Odometry And Mapping(LOAM)is used as a groundtruth for comparing the Visual SLAM algorithms.I. Visual Simultaeneous Localization And Mapping(Visual SLAM) 1 1.1Visual SLAM์ด๋ž€ . . . . . . . . . . . . . . . . . . . . . . 1 1.2ํŠน์ง•์ ํƒ์ƒ‰. . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3Data Association . . . . . . . . . . . . . . . . . . . . . . . 3 1.4Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5์„ฑ๋Šฅํ‰๊ฐ€. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 II.์ž์œจ์ฃผ์ฐจ(Autonomous Parking). . . . . . . . . . . . . . . . 7 2.1์ž์œจ์ฃผ์ฐจ๋ž€ . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2์ž์œจ์ฃผ์ฐจ์˜๋ฐœ์ „. . . . . . . . . . . . . . . . . . . . . . . 7 2.3์ƒ์šฉ์ž์œจ์ฃผ์ฐจ. . . . . . . . . . . . . . . . . . . . . . . . 8 III.์ž์œจ์ฃผ์ฐจ๋ฅผ์œ„ํ•œAVM๊ธฐ๋ฐ˜Visual SLAM. . . . . . . . . . . 9 3.1์„œ๋ก . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2๋ฐฉ๋ฒ•. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1์ œ์•ˆํ•˜๋Š”SLAMํŒŒ์ดํ”„๋ผ์ธ. . . . . . . . . . . . 13 3.2.2๊ต์ฐจ์ ์˜ํƒ์ƒ‰๊ณผ์ถ”์ ๊ทธ๋ฆฌ๊ณ ๋ชจ์„œ๋ฆฌ์ถ”์ถœ. . . . . 16 3.2.3ํ‘ธ๋ฆฌ์—๋ณ€ํ™˜์„์ด์šฉํ•œ์œ„์น˜์ถ”์ •. . . . . . . . . . 18 3.2.4Keyframe์ƒ์„ฑ. . . . . . . . . . . . . . . . . . . . 20 3.2.5Data Association . . . . . . . . . . . . . . . . . . . 22 3.2.6๊ต์ฐจ์ ์„์ด์šฉํ•œLandmark๊ธฐ๋ฐ˜์˜์œ„์น˜์ถ”์ •. . . 24 3.3์‹คํ—˜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1์‹คํ—˜์ค€๋น„. . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2์‹คํ—˜๊ฒฐ๊ณผ. . . . . . . . . . . . . . . . . . . . . . . 28 3.4๊ณ ์ฐฐ๋ฐ๊ฒฐ๋ก . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.1๊ณ ์ฐฐ. . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.2๊ฒฐ๋ก . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ์ฐธ๊ณ ๋ฌธํ—Œ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Maste
    corecore