328 research outputs found

    Billiard complexity in rational polyhedra

    Full text link
    We give a new proof for the directional billiard complexity in the cube, which was conjectured in \cite{Ra} and proven in \cite{Ar.Ma.Sh.Ta}. Our technique gives us a similar theorem for some rational polyhedra.Comment: 9 pages, 4 figure

    Notes on divisible MV-algebras

    Full text link
    In these notes we study the class of divisible MV-algebras inside the algebraic hierarchy of MV-algebras with product. We connect divisible MV-algebras with Q\mathbb Q-vector lattices, we present the divisible hull as a categorical adjunction and we prove a duality between finitely presented algebras and rational polyhedra

    Stanley's Major Contributions to Ehrhart Theory

    Full text link
    This expository paper features a few highlights of Richard Stanley's extensive work in Ehrhart theory, the study of integer-point enumeration in rational polyhedra. We include results from the recent literature building on Stanley's work, as well as several open problems.Comment: 9 pages; to appear in the 70th-birthday volume honoring Richard Stanle

    An analysis of mixed integer linear sets based on lattice point free convex sets

    Full text link
    Split cuts are cutting planes for mixed integer programs whose validity is derived from maximal lattice point free polyhedra of the form S:={x:π0πTxπ0+1}S:=\{x : \pi_0 \leq \pi^T x \leq \pi_0+1 \} called split sets. The set obtained by adding all split cuts is called the split closure, and the split closure is known to be a polyhedron. A split set SS has max-facet-width equal to one in the sense that max{πTx:xS}min{πTx:xS}1\max\{\pi^T x : x \in S \}-\min\{\pi^T x : x \in S \} \leq 1. In this paper we consider using general lattice point free rational polyhedra to derive valid cuts for mixed integer linear sets. We say that lattice point free polyhedra with max-facet-width equal to ww have width size ww. A split cut of width size ww is then a valid inequality whose validity follows from a lattice point free rational polyhedron of width size ww. The ww-th split closure is the set obtained by adding all valid inequalities of width size at most ww. Our main result is a sufficient condition for the addition of a family of rational inequalities to result in a polyhedral relaxation. We then show that a corollary is that the ww-th split closure is a polyhedron. Given this result, a natural question is which width size ww^* is required to design a finite cutting plane proof for the validity of an inequality. Specifically, for this value ww^*, a finite cutting plane proof exists that uses lattice point free rational polyhedra of width size at most ww^*, but no finite cutting plane proof that only uses lattice point free rational polyhedra of width size smaller than ww^*. We characterize ww^* based on the faces of the linear relaxation
    corecore