82 research outputs found

    Rational interpolation to solutions of Riccati difference equations on elliptic lattices

    Get PDF
    AbstractIt is shown how to define difference equations on particular lattices {xn}, n∈Z, where the xns are values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations (elliptic Riccati equations) have remarkable simple (!) interpolatory continued fraction expansions

    Elliptic Hypergeometric Solutions to Elliptic Difference Equations

    No full text
    It is shown how to define difference equations on particular lattices {xn}, n ∊ Z, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear difference equations of first order are considered here

    Semi-classical Orthogonal Polynomial Systems on Non-uniform Lattices, Deformations of the Askey Table and Analogs of Isomonodromy

    Full text link
    A D\mathbb{D}-semi-classical weight is one which satisfies a particular linear, first order homogeneous equation in a divided-difference operator D\mathbb{D}. It is known that the system of polynomials, orthogonal with respect to this weight, and the associated functions satisfy a linear, first order homogeneous matrix equation in the divided-difference operator termed the spectral equation. Attached to the spectral equation is a structure which constitutes a number of relations such as those arising from compatibility with the three-term recurrence relation. Here this structure is elucidated in the general case of quadratic lattices. The simplest examples of the D\mathbb{D}-semi-classical orthogonal polynomial systems are precisely those in the Askey table of hypergeometric and basic hypergeometric orthogonal polynomials. However within the D\mathbb{D}-semi-classical class it is entirely natural to define a generalisation of the Askey table weights which involve a deformation with respect to new deformation variables. We completely construct the analogous structures arising from such deformations and their relations with the other elements of the theory. As an example we treat the first non-trivial deformation of the Askey-Wilson orthogonal polynomial system defined by the qq-quadratic divided-difference operator, the Askey-Wilson operator, and derive the coupled first order divided-difference equations characterising its evolution in the deformation variable. We show that this system is a member of a sequence of classical solutions to the E7(1) E^{(1)}_7 qq-Painlev\'e system.Comment: Submitted to Duke Mathematical Journal on 5th April 201

    Rational Krylov and ADI iteration for infinite size quasi-Toeplitz matrix equations

    Get PDF
    We consider a class of linear matrix equations involving semi-infinite matrices which have a quasi-Toeplitz structure. These equations arise in different settings, mostly connected with PDEs or the study of Markov chains such as random walks on bidimensional lattices. We present the theory justifying the existence in an appropriate Banach algebra which is computationally treatable, and we propose several methods for their solutions. We show how to adapt the ADI iteration to this particular infinite dimensional setting, and how to construct rational Krylov methods. Convergence theory is discussed, and numerical experiments validate the proposed approaches

    Author index for volumes 101–200

    Get PDF
    corecore