28,817 research outputs found

    Fuchs versus Painlev\'e

    Full text link
    We briefly recall the Fuchs-Painlev\'e elliptic representation of Painlev\'e VI. We then show that the polynomiality of the expressions of the correlation functions (and form factors) in terms of the complete elliptic integral of the first and second kind, K K and E E, is a straight consequence of the fact that the differential operators corresponding to the entries of Toeplitz-like determinants, are equivalent to the second order operator LE L_E which has E E as solution (or, for off-diagonal correlations to the direct sum of LE L_E and d/dt d/dt). We show that this can be generalized, mutatis mutandis, to the anisotropic Ising model. The singled-out second order linear differential operator LE L_E being replaced by an isomonodromic system of two third-order linear partial differential operators associated with Π1 \Pi_1, the Jacobi's form of the complete elliptic integral of the third kind (or equivalently two second order linear partial differential operators associated with Appell functions, where one of these operators can be seen as a deformation of LE L_E). We finally explore the generalizations, to the anisotropic Ising models, of the links we made, in two previous papers, between Painlev\'e non-linear ODE's, Fuchsian linear ODE's and elliptic curves. In particular the elliptic representation of Painlev\'e VI has to be generalized to an ``Appellian'' representation of Garnier systems.Comment: Dedicated to the : Special issue on Symmetries and Integrability of Difference Equations, SIDE VII meeting held in Melbourne during July 200

    A multiple exp-function method for nonlinear differential equations and its application

    Full text link
    A multiple exp-function method to exact multiple wave solutions of nonlinear partial differential equations is proposed. The method is oriented towards ease of use and capability of computer algebra systems, and provides a direct and systematical solution procedure which generalizes Hirota's perturbation scheme. With help of Maple, an application of the approach to the 3+13+1 dimensional potential-Yu-Toda-Sasa-Fukuyama equation yields exact explicit 1-wave and 2-wave and 3-wave solutions, which include 1-soliton, 2-soliton and 3-soliton type solutions. Two cases with specific values of the involved parameters are plotted for each of 2-wave and 3-wave solutions.Comment: 12 pages, 16 figure

    Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    Full text link
    Lattice statistical mechanics, often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in a general mathematical framework, be too complex, or could not be defined. Considering several Picard-Fuchs systems of two-variables "above" Calabi-Yau ODEs, associated with double hypergeometric series, we show that holonomic functions are actually a good framework for actually finding the singular manifolds. We, then, analyse the singular algebraic varieties of the n-fold integrals χ(n) \chi^{(n)}, corresponding to the decomposition of the magnetic susceptibility of the anisotropic square Ising model. We revisit a set of Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find a first set of non-Nickelian singularities for χ(3) \chi^{(3)} and χ(4) \chi^{(4)}, that also turns out to be rational or ellipic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model. We address, from a birational viewpoint, the emergence of families of elliptic curves, and of Calabi-Yau manifolds on such problems. We discuss the accumulation of these singular curves for the non-holonomic anisotropic full susceptibility.Comment: 36 page

    Parameterized generic Galois groups for q-difference equations, followed by the appendix "The Galois D-groupoid of a q-difference system" by Anne Granier

    Full text link
    We introduce the parameterized generic Galois group of a q-difference module, that is a differential group in the sense of Kolchin. It is associated to the smallest differential tannakian category generated by the q-difference module, equipped with the forgetful functor. Our previous results on the Grothendieck conjecture for q-difference equations lead to an adelic description of the parameterized generic Galois group, in the spirit of the Grothendieck-Katz's conjecture on p-curvatures. Using this description, we show that the Malgrange-Granier D-groupoid of a nonlinear q-difference system coincides, in the linear case, with the parameterized generic Galois group introduced here. The paper is followed by an appendix by A. Granier, that provides a quick introduction to the D-groupoid of a non-linear q-difference equation.Comment: The content of this paper was previously included in arXiv:1002.483

    A Reduced Form for Linear Differential Systems and its Application to Integrability of Hamiltonian Systems

    Get PDF
    Let [A]:Y′=AY[A]: Y'=AY with A∈Mn(k)A\in \mathrm{M}_n (k) be a differential linear system. We say that a matrix R∈Mn(kˉ)R\in {\cal M}_{n}(\bar{k}) is a {\em reduced form} of [A][A] if R∈g(kˉ)R\in \mathfrak{g}(\bar{k}) and there exists P∈GLn(kˉ)P\in GL_n (\bar{k}) such that R=P−1(AP−P′)∈g(kˉ)R=P^{-1}(AP-P')\in \mathfrak{g}(\bar{k}). Such a form is often the sparsest possible attainable through gauge transformations without introducing new transcendants. In this article, we discuss how to compute reduced forms of some symplectic differential systems, arising as variational equations of hamiltonian systems. We use this to give an effective form of the Morales-Ramis theorem on (non)-integrability of Hamiltonian systems.Comment: 28 page
    • …
    corecore