139 research outputs found

    Graph Kernels

    Get PDF
    We present a unified framework to study graph kernels, special cases of which include the random walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004; Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time complexity of kernel computation between unlabeled graphs with n vertices from O(n^6) to O(n^3). We find a spectral decomposition approach even more efficient when computing entire kernel matrices. For labeled graphs we develop conjugate gradient and fixed-point methods that take O(dn^3) time per iteration, where d is the size of the label set. By extending the necessary linear algebra to Reproducing Kernel Hilbert Spaces (RKHS) we obtain the same result for d-dimensional edge kernels, and O(n^4) in the infinite-dimensional case; on sparse graphs these algorithms only take O(n^2) time per iteration in all cases. Experiments on graphs from bioinformatics and other application domains show that these techniques can speed up computation of the kernel by an order of magnitude or more. We also show that certain rational kernels (Cortes et al., 2002, 2003, 2004) when specialized to graphs reduce to our random walk graph kernel. Finally, we relate our framework to R-convolution kernels (Haussler, 1999) and provide a kernel that is close to the optimal assignment kernel of Fröhlich et al. (2006) yet provably positive semi-definite

    Evolutionary distances in the twilight zone -- a rational kernel approach

    Get PDF
    Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.Comment: to appear in PLoS ON

    The Boundedness of Cauchy Integral Operator on a Domain Having Closed Analytic Boundary

    Full text link
    In this paper, we prove that the Cauchy integral operators (or Cauchy transforms) define continuous linear operators on the Smirnov classes for some certain domain with closed analytic boundary

    Effect of the Tunneling Conductance on the Coulomb Staircase

    Full text link
    Quantum fluctuations of the charge in the single electron box are investigated. The rounding of the Coulomb staircase caused by virtual electron tunneling is determined by perturbation theory up to third order in the tunneling conductance and compared with precise Monte Carlo data computed with a new algorithm. The remarkable agreement for large conductance indicates that presently available experimental data on Coulomb charging effects in metallic nanostructures can be well explained by finite order perturbative results.Comment: 4 pages, 5 figure

    A kernel for time series based on global alignments

    Full text link
    We propose in this paper a new family of kernels to handle times series, notably speech data, within the framework of kernel methods which includes popular algorithms such as the Support Vector Machine. These kernels elaborate on the well known Dynamic Time Warping (DTW) family of distances by considering the same set of elementary operations, namely substitutions and repetitions of tokens, to map a sequence onto another. Associating to each of these operations a given score, DTW algorithms use dynamic programming techniques to compute an optimal sequence of operations with high overall score. In this paper we consider instead the score spanned by all possible alignments, take a smoothed version of their maximum and derive a kernel out of this formulation. We prove that this kernel is positive definite under favorable conditions and show how it can be tuned effectively for practical applications as we report encouraging results on a speech recognition task
    corecore