150,332 research outputs found

    Rational Function Decomposition of Polynomials

    Get PDF
    We determine conditions under which an arbitrary polynomial can be expressed as the composition of two rational functions, generalizing the work of J. Rickards on the decomposition into two polynomials. We show that a polynomial can be expressed non-trivially as a composition of two rational functions if and only if it can be so decomposed into two polynomials

    Canonical decomposition of linear differential operators with selected differential Galois groups

    Full text link
    We revisit an order-six linear differential operator having a solution which is a diagonal of a rational function of three variables. Its exterior square has a rational solution, indicating that it has a selected differential Galois group, and is actually homomorphic to its adjoint. We obtain the two corresponding intertwiners giving this homomorphism to the adjoint. We show that these intertwiners are also homomorphic to their adjoint and have a simple decomposition, already underlined in a previous paper, in terms of order-two self-adjoint operators. From these results, we deduce a new form of decomposition of operators for this selected order-six linear differential operator in terms of three order-two self-adjoint operators. We then generalize the previous decomposition to decompositions in terms of an arbitrary number of self-adjoint operators of the same parity order. This yields an infinite family of linear differential operators homomorphic to their adjoint, and, thus, with a selected differential Galois group. We show that the equivalence of such operators is compatible with these canonical decompositions. The rational solutions of the symmetric, or exterior, squares of these selected operators are, noticeably, seen to depend only on the rightmost self-adjoint operator in the decomposition. These results, and tools, are applied on operators of large orders. For instance, it is seen that a large set of (quite massive) operators, associated with reflexive 4-polytopes defining Calabi-Yau 3-folds, obtained recently by P. Lairez, correspond to a particular form of the decomposition detailed in this paper.Comment: 40 page

    A Backward Stable Algorithm for Computing the CS Decomposition via the Polar Decomposition

    Full text link
    We introduce a backward stable algorithm for computing the CS decomposition of a partitioned 2n×n2n \times n matrix with orthonormal columns, or a rank-deficient partial isometry. The algorithm computes two n×nn \times n polar decompositions (which can be carried out in parallel) followed by an eigendecomposition of a judiciously crafted n×nn \times n Hermitian matrix. We prove that the algorithm is backward stable whenever the aforementioned decompositions are computed in a backward stable way. Since the polar decomposition and the symmetric eigendecomposition are highly amenable to parallelization, the algorithm inherits this feature. We illustrate this fact by invoking recently developed algorithms for the polar decomposition and symmetric eigendecomposition that leverage Zolotarev's best rational approximations of the sign function. Numerical examples demonstrate that the resulting algorithm for computing the CS decomposition enjoys excellent numerical stability

    A Fast Algorithm for MacMahon's Partition Analysis

    Full text link
    This paper deals with evaluating constant terms of a special class of rational functions, the Elliott-rational functions. The constant term of such a function can be read off immediately from its partial fraction decomposition. We combine the theory of iterated Laurent series and a new algorithm for partial fraction decompositions to obtain a fast algorithm for MacMahon's Omega calculus, which (partially) avoids the "run-time explosion" problem when eliminating several variables. We discuss the efficiency of our algorithm by investigating problems studied by Andrews and his coauthors; our running time is much less than that of their Omega package.Comment: 22 page

    A closed character formula for symmetric powers of irreducible representations

    Get PDF
    We prove a closed character formula for the symmetric powers SNV(λ)S^N V(\lambda) of a fixed irreducible representation V(λ)V(\lambda) of a complex semi-simple Lie algebra g\mathfrak{g} by means of partial fraction decomposition. The formula involves rational functions in rank of g\mathfrak{g} many variables which are easier to determine than the weight multiplicities of SNV(λ)S^N V(\lambda) themselves. We compute those rational functions in some interesting cases. Furthermore, we introduce a residue-type generating function for the weight multiplicities of SNV(λ)S^N V(\lambda) and explain the connections between our character formula, vector partition functions and iterated partial fraction decomposition.Comment: 14 pages, 1 figure, published versio
    corecore