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A Closed Character Formula for Symmetric
Powers of Irreducible Representations

Stavros Kousidis†

Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

Abstract. We prove a closed character formula for the symmetric powers SNV (λ ) of a fixed irreducible representation
V (λ ) of a complex semi-simple Lie algebra g by means of partial fraction decomposition. The formula involves
rational functions in rank of g many variables which are easier to determine than the weight multiplicities of SNV (λ )
themselves. We compute those rational functions in some interesting cases. Furthermore, we introduce a residue-
type generating function for the weight multiplicities of SNV (λ ) and explain the connections between our character
formula, vector partition functions and iterated partial fraction decomposition.

Résumé. Nous établissons une formule fermée pour le caractère de la puissance symétrique SNV (λ ) d’une représen-
tation irréductible V (λ ) d’une algèbre de Lie semi-simple complexe g, en utilisant des décompositions en fractions
partielles. Cette formule exprime ce caractère en termes de fractions rationnelles en r variables, où r est le rang de g.
Ces fractions sont plus faciles à déterminer que les multiplicités de la décomposition de SNV (λ ) elles-mêmes. Nous
calculons ces fonctions rationnelles dans quelques cas intéressants. Nous introduisons par ailleurs une fonction géné-
ratrice de type résidu pour les multiplicités de SNV (λ ) et relions notre formule aux fonctions de partitions vectorielles
et aux décompositions itérées en fractions partielles.

Keywords: character, symmetric power, irreducible representation, generating function, residue, partial fraction
decomposition, vector partition function

1 Notation
Let g be a complex semi-simple Lie algebra of rank r. Fix a Borel b and a Cartan subalgebra h in g and
let Q =

⊕r
i=1Zαi and X =

⊕r
i=1Zωi be the corresponding root and weight lattice spanned by the simple

roots and fundamental weights respectively. Let α∨1 , . . . ,α
∨
r be the simple coroots and W the Weyl group.

An irreducible representation of g of highest weight λ ∈ X+, where X+ stands for all dominant weights,
is denoted by V (λ ). Its character will be written as CharV (λ ) and it is well-known that it is an element of
Z[X ], the integral group ring associated to the weight lattice. Each generator eµ ∈ Z[X ] yields a function
on hR, the real span of the simple coroots, by x 7→ e〈µ,x〉. In this sense we have the associated Fourier
series of the character of V (λ ) as a function of hR, i.e. CharV (λ )(ix) = ∑µ∈X mµ ei〈µ,x〉. To simplify
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notation in what follows we define q = ei〈·,x〉, i.e. qµ = ei〈µ,x〉. Then, with respect to the coordinate system
{α∨1 , . . . ,α∨r } of hR we have q = (q1, . . . ,qr) with qi = ei〈·,xiα

∨
i 〉 and for µ = c1ω1 + . . .+ crωr

qµ = (q1, . . . ,qr)
(c1,...,cr) = qc1

1 · · ·q
cr
r ∈ Z[q±1

1 , . . . ,q±1
r ]. (1)

Note, whenever we write N we mean the non-negative integers {0,1,2, . . .}.

2 Introduction and the Main Theorem
Let mλ ,N : X → N be the weight multiplicity function for the N-th symmetric power of a fixed irreducible
representation V (λ ) of g, i.e. CharSNV (λ ) = ∑ν∈X mλ ,N(ν)eν ∈ Z[X ]. Then, we have the combinatorial
identity

mλ ,N(ν) = ∑
{ν1 ,...,νN}⊂X
ν1+...+νN=ν

mλ ,1(ν1) · · ·mλ ,1(νN). (2)

In general it is a non-trivial problem to determine mλ ,N . That is, to establish a formula depending on N
that counts the unordered pairs {ν1, . . . ,νN} subject to the restriction ν1 + . . .+νN = ν .

We will instead identify the Fourier series associated to the character of SNV (λ ) as an element of
C(q1, . . . ,qr)[X ] (see section 1 for the notation). The key point is that this identification involves data
(apart from terms in N) which is easier to determine than the function mλ ,N and depends only on the fixed
representation V (λ ). Starting point will be Molien’s formula (see (Procesi, 2007, Chapter 9, §4.3)) which
identifies the graded character of the symmetric algebra of V (λ ) as a product of geometric series. We will
state this result here for a quick reference.

Lemma 2.1 (compare (Procesi, 2007, Chapter 9, §4.3)).

CharSV (λ ) =
∞

∑
N=0

zN CharSNV (λ ) = ∏
ν∈X

1
(1− eν z)dimV (λ )ν

(3)

Our main result will be Theorem 3.4 in Section 3. That is,

Theorem (Character formula). Let g be a semi-simple complex Lie algebra of rank r and V (λ ) a fixed
irreducible representation of g with weight space decomposition V (λ ) =

⊕
ν∈X V (λ )ν and weight multi-

plicity function mλ : X → N. Then, with q = ei〈·,x〉 = (q1, . . . ,qr) as above, we have

CharSNV (λ )(ix) = ∑
ν∈X

qNν

mλ (ν)

∑
k=1

Aν ,k(q) · pk(N) ∈ C(q1, . . . ,qr)[X ] (4)

with rational functions Aν ,k(q) ∈ C(q1, . . . ,qr) and polynomials pk(N) ∈Q[N] of degree k−1 given by

pk(N) =

(
N + k−1

N

)
. (5)

Furthermore, for a weight µ ∈ X and l = 0, . . . ,mλ (µ)−1 we have

Aµ,mλ (µ)−l(q) =
(−1)l

l!qlµ ·
dl

(dz)l

[
∏

ν∈X\µ

1
(1−qν z)mλ (ν)

]
z=q−µ

. (6)
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We will apply this theorem to prove character formulas in some interesting cases, involving in particular
concrete expressions for the rational functions. To the authors’ knowledge there is no formula of such
type known so far although the derivation of the Main Theorem is based on simple observations(i).

In Section 4, Proposition 4.1 we will prove an integral expression for the generating function associated
to the weight multiplicity functions mN,λ (evaluated at a fixed weight µ ∈ X) of the sequence of represen-
tations SNV (λ ). Based on this identity and our Main Theorem above we will explain the nature of this
generating function and in particular why it is of residue-type.

Section 5 will be a short sketch of the connections between the results of section 3, 4 and vector partition
functions and iterated partial fraction decomposition (see e.g. Beck (2004) and Bliem (2009)).

Section 6 comments on an important continuation of the present discussion. That is, the character for-
mula established in the Main Theorem can be split into individual parts belonging to the Weyl group orbits
of dominant weights. The question is what can be expected from the iterated partial fraction decomposi-
tion of those individual terms. We illustrate a possible answer by an example. A detailed treatment will
appear in the full version of this extended abstract.

3 A closed character formula for symmetric powers
We will derive a closed character formula for the representation SNV (λ ) in terms of a basis of weight
vectors of the irreducible representation V (λ ) with weight multiplicity function mλ and the parameter N.
The term “closed” will be explained in detail in Note 3.5 once we have proven our main result, Theorem
3.4. The method we use is the partial fraction decomposition. That is, consider the identity of Lemma 2.1
for q = ei〈·,x〉, x ∈ hR,

∞

∑
N=0

zN CharSNV (λ )(ix) = ∏
ν∈X

1
(1−qν z)mλ (ν)

. (7)

Partial fraction decomposition with respect to the variable z (abbreviated by PFDz) of the right-hand side
of Equation (7) gives

Proposition 3.1. Let g be a semi-simple complex Lie algebra of rank r and V (λ ) a fixed irreducible rep-
resentation of g with weight space decomposition V (λ ) =

⊕
ν∈X V (λ )ν and weight multiplicity function

mλ : X → N. With q = ei〈·,x〉 = (q1, . . . ,qr) as above,

PFDz

(
∏
ν∈X

1
(1−qν z)mλ (ν)

)
= ∑

ν∈X

mλ (ν)

∑
k=1

Aν ,k(q)
1

(1−qν z)k (8)

where for each ν ∈ X and k ∈ N we have Aν ,k(q) ∈ C(q1, . . . ,qr).

Proof. See e.g. Eustice and Klamkin (1979), Lang (2002), (Bliem, 2009, Lemma 1).

Note 3.2. The right-hand side of Equation (8) is a finite sum since the second summation gives zero if a
weight ν does not appear in V (λ ), i.e. mλ (ν) = 0.

We aim at a power series expansion of the right-hand side of Equation (8) with respect to the variable
z. The following proposition will make life easier.

(i) and on “Mickey Mouse”-analysis as Alan Huckleberry has put it to me in private communication
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Proposition 3.3. For ν ∈ X and q = ei〈·,x〉 as above, we have

1
(1−qν z)k =

∞

∑
N=0

zNqNν pk(N) (9)

where pk(N) is a polynomial in N of degree k−1 given by pk(N) =
(N+k−1

N

)
.

Proof. Write down the Cauchy product of the k-th power of the geometric series (1−qν z)−1. Then, you
see that pk(N) is given by

pk(N) =
N

∑
jk−1=0

jk−1

∑
jk−2=0

· · ·
j2

∑
j1=0

1 =

(
N + k−1

N

)
. (10)

As a direct consequence of Equation (8) and Proposition 3.3 we obtain our main result.

Theorem 3.4 (Character formula). Let g be a semi-simple complex Lie algebra of rank r and V (λ ) a
fixed irreducible representation of g with weight space decomposition V (λ ) =

⊕
ν∈X V (λ )ν and weight

multiplicity function mλ : X → N. Then, with q = ei〈·,x〉 = (q1, . . . ,qr) as above, we have

CharSNV (λ )(ix) = ∑
ν∈X

qNν

mλ (ν)

∑
k=1

Aν ,k(q) · pk(N) ∈ C(q1, . . . ,qr)[X ] (11)

with rational functions Aν ,k(q) ∈ C(q1, . . . ,qr) and polynomials pk(N) ∈Q[N] of degree k−1 given by

pk(N) =

(
N + k−1

N

)
. (12)

Furthermore, for a weight µ ∈ X and l = 0, . . . ,mλ (µ)−1 we have

Aµ,mλ (µ)−l(q) =
(−1)l

l!qlµ ·
dl

(dz)l

[
∏

ν∈X\µ

1
(1−qν z)mλ (ν)

]
z=q−µ

. (13)

Proof. From Equation (8) we see that

CharSNV (λ )(ix) = Resz=0

[
1

zN+1 ∑
ν∈X

mλ (ν)

∑
k=1

Aν ,k(q)
1

(1−qν z)k

]
. (14)

Then, Proposition 3.3 finishes the first part of the proof. For the second part multiply the right-hand side of
Equation (8) by (1−qµ z)mλ (µ) which is equivalent to take the product over X \µ in Equation (13). By the
product rule of differentiation we see that all summands except the µ-th one give zero after differentiation
and evaluation at q−µ . Therefore, the remaining part is

dl

(dz)l

[
mλ (µ)

∑
k=1

Aµ,k(q)(1−qν z)mλ (µ)−k

]
z=q−µ

(15)
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=

[
mλ (µ)

∑
k=mλ (µ)−l

Aµ,k(q)(−1)lqlµ
l

∏
i=0

(mλ (µ)− k− i)(1−qν z)mλ (µ)−k−l

]
z=q−µ

= Aµ,mλ (µ)−l(q)(−1)lqlµ l!.

Note 3.5. Now we are able to explain the term “closed” used in the beginning of this section. Namely,
the identity stated in Theorem 3.4 shows that all relevant data needed to describe the character of SNV (λ ),
in particular the rational functions Aν ,k(q), depends on the weight space decomposition and weight mul-
tiplicity function mλ of the fixed representation V (λ ).

Note 3.6. Equation (13) might be a simple observation but it is a very effective method to compute
the rational functions associated to weights of multiplicity 1. Then, we have no differentiation but just
simple evaluation. In particular, one can immediately compute the character of the symmetric powers of a
multiplicity free irreducible representation V . Note that in this case one could also obtain the character of
SNV by plugging the k-many weights of the representation V into the complete homogeneous symmetric
polynomial identity

hN(x1, . . . ,xk) =
k

∑
i=1

xN
i

∏ j 6=i(1− x jx−1
i )

. (16)

As a consequence of Note 3.6 we can prove concrete character formulas for the symmetric powers of
the irreducible representations V (m) of g being of type A1 and furthermore for the symmetric powers of
the fundamental representation V (ω1) of g of type Ar.

Corollary 3.7. For g= sl(2,C) and its irreducible representation V (m), m ∈ N, the Fourier series of the
character of SNV (m) is given by

CharSNV (m)(ix) =
m

∑
i=0

qN(m−2i)Am−2i,1(q) ∈ C(q)[X ] (17)

where q = eix as above and with rational functions

Am−2i,1(q) = (−1)iq(m−i)(m−i+1)
m

∏
j=0
j 6=i

1
q2|i− j|−1

. (18)

Proof. The weights of V (m) are given by (m−2i)ω1 where i = 0, . . . ,m. By Theorem 3.4 we immediately
obtain the claimed character formula and

Am−2i,1(q) =
(−1)0

0!q0(m−2i)ω1

d0

(dz)0

 m

∏
j=0
j 6=i

1
1−q(m−2 j)z


z=q−(m−2i)

=
m

∏
j=0
j 6=i

1
1−q(m−2 j)q−(m−2i)

(19)

= ∏
0≤ j<i

1
1−q2(i− j) ∏

i< j≤m

q2( j−i)

q2( j−i)−1
= (−1)iq(m−i)(m−i+1)

m

∏
j=0
j 6=i

1
q2|i− j|−1

.
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Example 3.8. Let g= sl(2,C). Since SNV (0) =V (0) and SNV (1) =V (N), the first non-trivial example
is given by the adjoint representation V (2) and its symmetric powers SNV (2). By Corollary 3.7 we have

CharSNV (2)(ix) =
q6

(q4−1)(q2−1)
·q2N +

−q2

(q2−1)2 ·q
0 +

1
(q4−1)(q2−1)

·q−2N . (20)

Corollary 3.9. Let g= sl(r+1,C) and consider its fundamental representation V (ω1). Set ω0 = ωr+1 =
0, i.e. extend q = ei〈·,x〉 = (q1, . . . ,qr) by q0 = qr+1 = 1. Then,

CharSNV (ω1)(ix) =
r

∑
i=0

q−N
i qN

i+1A−ωi+ωi+1,1(q) ∈ C(q1, . . . ,qr)[X ] (21)

with rational functions

A−ωi+ωi+1,1(q) = qr
i+1

r

∏
j=0
j 6=i

q j

q jqi+1−q j+1qi
. (22)

Proof. The weights of the fundamental representation V (ω1) are ω1,−ω1 +ω2, . . . ,−ωn−1 +ωn,−ωn all
of multiplicity 1. Again, by Theorem 3.4 the claimed character formula follows and

A−ωi+ωi+1,1(q) =
(−1)0

0!q0(−ωi+ωi+1)

d0

(dz)0

 r

∏
j=0
j 6=i

1
1−q−1

j q j+1z


z=qiq

−1
i+1

=
r

∏
j=0
j 6=i

1
1−q−1

j q j+1qiq
−1
i+1

(23)

=
r

∏
j=0
j 6=i

q jqi+1

q jqi+1−q j+1qi
= qr

i+1

r

∏
j=0
j 6=i

q j

q jqi+1−q j+1qi
.

Remark 3.10. For g= sl(r+1,C) we have an interesting aspect coming up. Since SNV (ω1) =V (Nω1),
it is interesting to ask how the formulas obtained in Corollary 3.9 compare to the asymptotic theory of the
Duistermaat-Heckman measure with respect to the sequence of representations V (Nω1).

Note 3.11. Similarly to Corollary 3.9 one can compute the characters of the symmetric powers of the rep-
resentations V (ωi) for i = 2, . . . ,r. Note that although the number of weights contributing to SNV (ω1) =
V (Nω1) grows with N, their multiplicities always remain equal to 1. Nevertheless, the rational functions
associated to V (ω1) do not carry only trivial information, the number 1, but also encode which weights
appear in SNV (ω1). In contrast, the weight multiplicities in SNV (ωi) for i = 2, . . . ,r are non-trivial and
consequently their associated rational functions encode much more information. It is part of the full
version of this extended abstract to compute the characters of the SNV (ωi) and compare those formulas.

For representations with higher dimensional weight spaces (dim ≥ 2) the computations become more
difficult. We will demonstrate this by an example.

Example 3.12. Let g= sl(3,C) and V (ω1+ω2) be its adjoint representation which decomposes as shown
in the following picture, where q= ei〈·,x〉=(q1,q2)= (a,b) with respect to the fundamental weights ω1,ω2
and the simple coroots α∨1 ,α

∨
2 .
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qω1+ω2 = ab

q2ω1−ω2 = a2b−1

qω1−2ω2 = ab−2q−ω1−ω2 = a−1b−1

q−2ω1+ω2 = a−2b

q−ω1+2ω2 = a−1b2

q0 = a0b0

ω1

ω2

The picture shows the Littelmann paths Pω1+ω2 of shape ω1 +ω2 (see e.g. Littelmann (1994)) and the
elements of Z[a±1,b±1] corresponding to the weights of V (ω1+ω2). Here the difficulty lies in computing
the rational function associated to the zero weight which has multiplicity 2. This is a first example of a
non-trivial polynomial pk(N) coming up, namely p2(N) = N +1. We have

CharV (Nω1)(ix) =(A0,1(q)+A0,2(q)p2(N)) ·qN0 (24)

+A2ω1−ω2,1(q) ·q
N(2ω1−ω2)+A−2ω1+ω2,1(q) ·q

N(−2ω1+ω2)

+Aω1−2ω2,1(q) ·q
N(ω1−2ω2)+A−ω1+2ω2,1(q) ·q

N(−ω1+2ω2)

+A−ω1−ω2,1(q) ·q
N(−ω1−ω2)+Aω1+ω2,1(q) ·q

N(ω1+ω2).

The difficult part is

A0,1(q) =
d
dz

[
∏

ν∈X\0

1

(1−qν z)mω1+ω2 (ν)

]
z=q0=a0b0=1

=
−3a4b4

(ab−1)2(a−b2)2(a2−b)2 (25)

and we obtain

CharV (Nω1)(ix) =
−(3a4b4 +a4b4 p2(N))

(ab−1)2(a−b2)2(a2−b)2 ·a
0b0 (26)

+
a16b

(ab−1)(a−b2)(a2−b)2(a3−1)(a3−b3)(a4−b2)
·a2Nb−N

+
−b9

(ab−1)(a−b2)(a2−b)2(a3−1)(a3−b3)(a4−b2)
·a−2NbN

+
a9

(ab−1)(a−b2)2(a2−b)(b3−1)(a3−b3)(a2−b4)
·aNb−2N

+
−ab16

(ab−1)(a−b2)2(a2−b)(b3−1)(a3−b3)(a2−b4)
·a−Nb2N

+
ab

(ab−1)2(a−b2)(a2−b)(b3−1)(a3−1)(a2b2−1)
·a−Nb−N

+
−a9b9

(ab−1)2(a−b2)(a2−b)(b3−1)(a3−1)(a2b2−1)
·aNbN .
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Let us end this section with an important note.

Note 3.13. In the notation of Theorem 3.4 note that iterated partial fraction decomposition with respect to
the variables q1, . . . ,qr gives the Fourier series associated to the character of SNV (λ ). Thus, decomposing
the character formula in Theorem 3.4 further with respect to q1, . . . ,qr yields the weight multiplicity
functions mλ ,N . We illustrate this by elaborating on Example 3.8 where r = 1. That is, let us decompose
the character

CharSNV (2)(ix) =
q6

(q4−1)(q2−1)
·q2N +

−q2

(q2−1)2 ·q
0 +

1
(q4−1)(q2−1)

·q−2N (27)

further with respect to q. For e.g. N = 0, . . . ,5 this gives

N CharSNV (2)(ix)

1 q2 +1+q−2

2 q4 +q2 +2+q−2 +q−4

3 q6 +q4 +2q2 +2+2q−2 +q−4 +q−6

4 q8 +q6 +2q4 +2q2 +3+2q−2 +2q−4 +q−6 +q−8

5 q10 +q8 +2q6 +2q4 +3q2 +3+3q−2 +2q−4 +2q−6 +q−8 +q−10.

4 A residue-type generating function for the weight multiplicities
Consider the Fourier series associated to the character of the representation SNV (λ ) of our Lie algebra
g, i.e. CharSNV (λ )(ix) = ∑ν∈X mλ ,N(ν)ei〈ν ,x〉. Here mλ ,N denotes the weight multiplicity function of
SNV (λ ). Then, by inverse Fourier transform we can recover the Fourier coefficients mλ ,N(ν) as

mλ ,N(ν) =
1

(2π)r

∫
hR/2πX∗

e−i〈ν ,x〉CharSNV (λ )(ix)dx. (28)

Here dx is Lebesgue measure on hR normalized such that the volume of the torus T r = hR/2πX∗ is (2π)r.
Note that r is the rank of g. This yields the generating function for the weight multiplicity functions mλ ,N
evaluated at a specific weight. That is,

Proposition 4.1. Let g be a semi-simple complex Lie algebra of rank r and V (λ ) a fixed irreducible
representation of g. Let mλ ,N be the weight multiplicity function of the N-th symmetric power SNV (λ ).
Let µ ∈ X be a fixed weight. Then, the formal power series ∑

∞
N=0 zNmλ ,N(µ) is a holomorphic function in

the variable z on |z| ≤ R < 1. Moreover, we have the identity

∞

∑
N=0

zNmλ ,N(µ) =
1

(2π)r

∫
T r

e−i〈µ,x〉
∏
ν∈X

1

(1− ei〈ν ,x〉z)mλ ,1(ν)
dx. (29)

Proof. The assertion follows from the fact that the dimension of the symmetric power of a representation
grows sub-exponentially in N as

dimSNV (λ ) =

(
dimV (λ )−1+N

N

)
. (30)
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This amounts to say that for the fixed weight µ ∈ X the power series ∑
∞
N=0 zNe−i〈µ,x〉CharSNV (λ )(ix)

converges absolutely on |z| ≤ R < 1 uniformely in x ∈ T r. Namely, for arbitrary such x we have

|e−i〈µ,x〉CharSNV (λ )(ix)|= | ∑
ν∈X

mλ ,N(ν)e
i〈ν ,x〉| (31)

(triangle inequality)≤ ∑
ν∈X

mλ ,N(ν)

=

(
dimV (λ )−1+N

N

)
(C some constant) =CNdimV (λ )−1 + lower terms.

Therefore the radius of convergence is given by

r =
1

limsup
N→∞

N
√
|e−i〈µ,x〉CharSNV (λ )(ix)|

=
1

limsup
N→∞

N
√
|CNdimV (λ )−1 + lower terms|

= 1. (32)

By Lemma 2.1 the right-hand side of Equation (29) equals

1
(2π)r

∫
T r

e−i〈µ,x〉
∞

∑
N=0

zN CharSNV (λ )(ix)dx (33)

and since the previous convergence arguments allow us to integrate term by term, this finishes the proof.

Now we are able to explain why the generating function in Equation (29) is of residue-type.

Corollary 4.2 (Residue-type). Let g be a semi-simple complex Lie algebra of rank r and V (λ ) a fixed
irreducible representation of g. Let mλ ,N be the weight multiplicity function of the N-th symmetric power
SNV (λ ). Let µ ∈ X be a fixed weight and denote qµ = ei〈µ,x〉 as above. Then,

mλ ,N(µ) =
1

(2π)r

∫
T r

q−µ
∑

ν∈X
qNν

mλ (ν)

∑
k=1

Aν ,k(q) · pk(N)dx. (34)

In particular, the multiplicity mλ ,N(µ) equals the constant term of the function CharSNV (λ )(ix) shifted
by q−µ .

Proof. This is a direct consequence of Proposition 4.1 and Theorem 3.4.

Example 4.3. In the case g= sl(2,C) and the symmetric powers SNV (2) of the adjoint representation we
have described in Note 3.13 that, e.g. for N = 4,

CharS4V (2)(ix) = q8 +q6 +2q4 +2q2 +3+2q−2 +2q−4 +q−6 +q−8. (35)

Note that q = eix. Now, in view of Corollary 4.2, the multiplicity of the weight µ = 2ω1 in S4V (2) is given
by

mλ ,N(µ) = m2,4(2) =
1

2π

∫
S1

q−2(q8 +q6 +2q4 +2q2 +3+2q−2 +2q−4 +q−6 +q−8)dx (36)
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=
1

2π

∫
S1

q6 +q4 +2q2 +2q0 +3q−2 +2q−4 +2q−6 +q−8 +q−10dx =
1

2π

∫
S1

2q0dx = 2

Remark 4.4. Similar to Proposition 4.1 we have a generating function for the weight multiplicity func-
tions mΛ

λ ,N of the exterior powers ΛNV (λ ) of an irreducible representation V (λ ). First, realize (see (Pro-
cesi, 2007, Chapter 9, §4.3)) that the graded character of the exterior algebra of V (λ ) is given by

CharΛV (λ ) =
∞

∑
N=0

zN CharΛ
NV (λ ) = ∏

ν∈X
(1+ eν z)mΛ

λ ,1(ν). (37)

Then, again by inverse Fourier transform and the same convergence arguments we obtain a generating
function with radius of convergence equal to 1, satisfying the identity

∞

∑
N=0

zNmΛ

λ ,N(µ) =
1

(2π)r

∫
T r

e−i〈µ,x〉
∏
ν∈X

(1+ ei〈ν ,x〉z)mΛ

λ ,1(ν)dx. (38)

Remark 4.5. For the tensor powers T NV (λ ) of a fixed irreducible representation V (λ ) with weight
multiplicity functions mT

λ ,N we have the identity CharT NV (λ ) = (CharV (λ ))N and consequently

(2π)r
∞

∑
N=0

zNmT
N(µ) =

∫
T r

e−i〈µ,x〉
∞

∑
N=0

zN CharT NV (λ )(ix)dx =
∫
T r

e−i〈µ,x〉 1
1−CharV (λ )(ix)z

dx. (39)

This constitutes a holomorphic function with radius of convergence equal to 1
dimV (λ ) .

5 Connection to vector partition functions
For an integral matrix A ∈ Z(m,d) with ker(A)∩Rd

+ = {0} we define the vector partition function φA :
Zm→ N by

φA(b) = #{x ∈ Nd : Ax = b}. (40)

Let c1, . . . ,cd denote the columns of A and use multiexponent notation zb = zb1
1 · · ·zbm

m , b ∈ Zm. Then, as
stated in (Bliem, 2009, Equation (1)), on {z ∈ Cm : |zck |< 1 for k = 1, . . . ,d} we have the identity

fA(z) := ∑
b∈Zm

φA(b)zb =
d

∏
k=1

1
1− zck

(41)

and

φA(b) = const
[

fA(z) · z−b
]
. (42)

Now, there is an obvious connection between the graded character of the symmetric algebra SV (λ ) of
an irreducible representation V (λ ) of a complex semi-simple Lie algebra g and the theory of vector
partition functions, which is given by Lemma 2.1. Namely, if g is of rank r, then one has a matrix
A ∈ Z(r+1,dimV (λ )) encoding the weights of V (λ ) in terms of the coordinate system given by the funda-
mental weights ω1, . . . ,ωr. This information corresponds to the first r rows of each column of A. In
addition to that, we have the (r+1)-th row which associates to the grading given by z in Lemma 2.1. That
is, our particular matrix A has the following properties
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1. The last row of A equals (1, . . . ,1). (grading)

2. The columns of A reflect the Weyl group action. (symmetry)

3. The columns of A appear with multiplicities. (multiplicity)

In contrast to the computational and algorithmic aspects of iterated partial fraction decomposition as
proposed in Beck (2004) and continued e.g. in Bliem (2009) for “arbitrary” matrices A, our interests are
different. They lie in investigating further the closed character formulas for the symmetric powers and the
impact of the grading, symmetry and multiplicity properties of our matrix A on the iterated partial fraction
decomposition. One aspect is described in detail in Section 6.

6 Weyl group orbits and the Main Theorem
In the notation of Theorem 3.4 write the character of SNV (λ ) as the sum over the dominant weights and
their Weyl group orbits, i.e.

CharSNV (λ )(ix) = ∑
ν∈X+

∑
w∈W/Wν

qNw.ν
mλ (ν)

∑
k=1

Aw.ν ,k(q) · pk(N). (43)

Here Wν denotes the stabilizer of the weight ν . Note that the multiplicity of a weight is invariant under
the operation of the Weyl group (see e.g. (Carter, 2005, Proposition 10.22)). Now, for a fixed dominant
weight ν ∈ X+ let

fν ,N(q) = ∑
w∈W/Wν

qNw.ν
mλ (ν)

∑
k=1

Aw.ν ,k(q) · pk(N) ∈ C(q1, . . . ,qr)[X ] (44)

so that CharSNV (λ )(ix) = ∑ν∈X+ fν ,N(q). It is interesting to ask how the iterated partial fraction decom-
position with respect to the variables q1, . . . ,qr of a single summand fν ,N(q) looks like. Examples indicate
that this decomposition of fν ,N(q) does not yield information about the weights outside the convex hull
of the Weyl group orbit W.(Nν). Furthermore, some additional terms appear which sum up to zero when
taken over all dominant weights X+. We will illustrate this by an example in the case of g being of rank 1
to avoid confusing computations.

Example 6.1. Consider the sequence of representations SNV (3) of g = sl(2,C). Then, by Corollary 3.7
we have

CharSNV (3)(ix) =
q12

(q6−1)(q4−1)(q2−1)
·q3N +

−q6

(q4−1)(q2−1)2 ·q
N (45)

+
q2

(q4−1)(q2−1)2 ·q
−N +

−1
(q6−1)(q4−1)(q2−1)

·q−3N

where q = eix. Hence, following the notation introduced in Equation (44) we set

f1,N(q) =
−q6

(q4−1)(q2−1)2 ·q
N +

q2

(q4−1)(q2−1)2 ·q
−N (46)
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f3,N(q) =
q12

(q6−1)(q4−1)(q2−1)
·q3N +

−1
(q6−1)(q4−1)(q2−1)

·q−3N . (47)

Now, e.g. for N = 4, we obtain

PFDq( f1,4(q)) =−q2−2−q−2− 3
4(q−1)2 +

3
4(q+1)

− 3
4(q−1)

− 3
4(q+1)2 (48)

and

PFDq( f3,4(q)) =q12 +q10 +2q8 +3q6 +4q4 +5q2 +7+5q−2 +4q−4 +3−6 +2q−8 (49)

+q−10 +q−12 +
3

4(q−1)2 −
3

4(q+1)
+

3
4(q−1)

+
3

4(q+1)2 ,

where in each individual decomposition the last four summands are the additional terms which sum up
to zero. Unfortunately this example indicates that we cannot expect a positive formula for the weight
multiplicities of the symmetric powers.
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