60 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Space-Time Signal Design for Multilevel Polar Coding in Slow Fading Broadcast Channels

    Full text link
    Slow fading broadcast channels can model a wide range of applications in wireless networks. Due to delay requirements and the unavailability of the channel state information at the transmitter (CSIT), these channels for many applications are non-ergodic. The appropriate measure for designing signals in non-ergodic channels is the outage probability. In this paper, we provide a method to optimize STBCs based on the outage probability at moderate SNRs. Multilevel polar coded-modulation is a new class of coded-modulation techniques that benefits from low complexity decoders and simple rate matching. In this paper, we derive the outage optimality condition for multistage decoding and propose a rule for determining component code rates. We also derive an upper bound on the outage probability of STBCs for designing the set-partitioning-based labelling. Finally, due to the optimality of the outage-minimized STBCs for long codes, we introduce a novel method for the joint optimization of short-to-moderate length polar codes and STBCs

    Rate-Splitting Multiple Access: The First Prototype and Experimental Validation of its Superiority over SDMA and NOMA

    Full text link
    In multi-user multi-antenna communications, it is well-known in theory that Rate-Splitting Multiple Access (RSMA) can achieve a higher spectral efficiency than both Space Division Multiple Access (SDMA) and Non-Orthogonal Multiple Access (NOMA). However, an experimental evaluation of RSMA's performance, relative to SDMA and NOMA, is missing in the literature, which is essential to address the ongoing debate between RSMA and NOMA over which is better suited to handle most efficiently the available resources and interference in 6G. In this paper, we address this critical knowledge gap by realizing the first-ever RSMA prototype using software-defined radios. Through measurements using our prototype, we empirically solve the modulation and coding scheme limited sum throughput maximization problem for RSMA, SDMA and NOMA for the two-user multiple-input single-output (MISO) scenario over (a) different pairs of line-of-sight channels that vary in terms of their relative pathloss and spatial correlation, and with (b) different channel state information quality. We observe that RSMA achieves the highest sum throughput across all these cases, whereas SDMA and NOMA are effective only in some cases. Furthermore, RSMA also achieves better fairness at a higher sum throughput than both SDMA and NOMA.Comment: major revisions of IEEE Transactions on Wireless Communication

    Rate-Splitting Multiple Access: Finite Constellations, Receiver Design, and SIC-free Implementation

    Full text link
    Rate-Splitting Multiple Access (RSMA) has emerged as a novel multiple access technique that enlarges the achievable rate region of Multiple-Input Multiple-Output (MIMO) broadcast channels with linear precoding. In this work, we jointly address three practical but fundamental questions: (1) How to exploit the benefit of RSMA under finite constellations? (2) What are the potential and promising ways to implement RSMA receivers? (3) Can RSMA still retain its superiority in the absence of successive interference cancellers (SIC)? To address these concerns, we first propose low-complexity precoder designs taking finite constellations into account and show that the potential of RSMA is better achieved with such designs than those assuming Gaussian signalling. We then consider some practical receiver designs that can be applied to RSMA. We notice that these receiver designs follow one of two principles: (1) SIC: cancelling upper layer signals before decoding the lower layer and (2) non-SIC: treating upper layer signals as noise when decoding the lower layer. In light of this, we propose to alter the precoder design according to the receiver category. Through link-level simulations, the effectiveness of the proposed precoder and receiver designs are verified. More importantly, we show that it is possible to preserve the superiority of RSMA over Spatial Domain Multiple Access (SDMA), including SDMA with advanced receivers, even without SIC at the receivers. Those results therefore open the door to competitive implementable RSMA strategies for 6G and beyond communications.Comment: Submitted to IEEE for publicatio

    On the Non-Orthogonal Layered Broadcast Codes in Cooperative Wireless Networks

    Get PDF
    A multi-fold increase in spectral efficiency and throughput are envisioned in the fifth generation of cellular networks to meet the requirements of International Telecommunication Union (ITU) IMT-2020 on massive connectivity and tremendous data traffic. This is achieved by evolution in three aspects of current networks. The first aspect is shrinking the cell sizes and deploying dense picocells and femtocells to boost the spectral reuse. The second is to allocate more spectrum resources including millimeter-wave bands. The third is deploying highly efficient communications and multiple access techniques. Non-orthogonal multiple access (NOMA) is a promising communication technique that complements the current commercial spectrum access approach to boost the spectral efficiency, where different data streams/users’ data share the same time, frequency and code resource blocks (sub-bands) via superimposition with each other. The receivers decode their own messages by deploying the successive interference cancellation (SIC) decoding rule. It is known that the NOMA coding is superior to conventional orthogonal multiple access (OMA) coding, where the resources are split among the users in either time or frequency domain. The NOMA based coding has been incorporated into other coding techniques including multi-input multi-output (MIMO), orthogonal frequency division multiplexing (OFDM), cognitive radio and cooperative techniques. In cooperative NOMA codes, either dedicated relay stations or stronger users with better channel conditions, act as relay to leverage the spatial diversity and to boost the performance of the other users. The advantage of spatial diversity gain in relay-based NOMA codes, is deployed to extend the coverage area of the network, to mitigate the fading effect of multipath channel and to increase the system throughput, hence improving the system efficiency. In this dissertation we consider the multimedia content delivery and machine type communications over 5G networks, where scalable content and low complexity encoders is of interest. We propose cross-layer design for transmission of successive refinement (SR) source code interplayed with non-orthogonal layered broadcast code for deployment in several cooperative network architectures. Firstly, we consider a multi-relay coding scheme where a source node is assisted by a half-duplex multi-relay non-orthogonal amplify-forward (NAF) network to communicate with a destination node. Assuming the channel state information (CSI) is not available at the source node, the achievable layered diversity multiplexing tradeoff (DMT) curve is derived. Then, by taking distortion exponent (DE) as the figure of merit, several achievable lower bounds are proved, and the optimal expected distortion performance under high signal to noise ratio (SNR) approximation is explicitly obtained. It is shown that the proposed coding can achieve the multi-input single-output (MISO) upper bound under certain regions of bandwidth ratios, by which the optimal performance in these regions can be explicitly characterized. Further the non-orthogonal layered coding scheme is extended to a multi-hop MIMO decode-forward (DF) relay network where a set of DE lower bounds is derived. Secondly, we propose a layered cooperative multi-user scheme based on non-orthogonal amplify-forward (NAF) relaying and non-orthogonal multiple access (NOMA) codes, aiming to achieve multi-user uplink transmissions with low complexity and low signaling overhead, particularly applicable to the machine type communications (MTC) and internet of things (IoT) systems. By assuming no CSI available at the transmitting nodes, the proposed layered codes make the transmission rate of each user adaptive to the channel realization. We derive the close-form analytical results on outage probability and the DMT curve of the proposed layered NAF codes in the asymptotic regime of high SNR, and optimize the end-to-end performance in terms of the exponential decay rate of expected distortion. Thirdly, we consider a single relay network and study the non-orthogonal layered scheme in the general SNR regime. A layered relaying scheme based on compress-forward (CF) is introduced, where optimization of end to end performance in terms of expected distortion is conducted to jointly determine network parameters. We further derive the explicit analytical optimal solution with two layers in the absence of channel knowledge. Finally, we consider the problem of multicast of multi-resolution layered messages over downlink of a cellular system with the assumption of CSI is not available at the base station (BS). Without loss generality, spatially random users are divided into two groups, where the near group users with better channel conditions decode for both layers, while the users in the second group decode for base layer only. Once the BS launches a multicast message, the first group users who successfully decoded the message, deploy a distributed cooperating scheme to assist the transmission to the other users. The cooperative scheme is naive but we will prove it can effectively enhance the network capacity. Closed form outage probability is explicitly derived for the two groups of users. Further it is shown that diversity order equal to the number of users in the near group is achievable, hence the coding gain of the proposed distributed scheme fully compensate the lack of CSI at the BS in terms of diversity order

    Rate-splitting multiple access for non-terrestrial communication and sensing networks

    Get PDF
    Rate-splitting multiple access (RSMA) has emerged as a powerful and flexible non-orthogonal transmission, multiple access (MA) and interference management scheme for future wireless networks. This thesis is concerned with the application of RSMA to non-terrestrial communication and sensing networks. Various scenarios and algorithms are presented and evaluated. First, we investigate a novel multigroup/multibeam multicast beamforming strategy based on RSMA in both terrestrial multigroup multicast and multibeam satellite systems with imperfect channel state information at the transmitter (CSIT). The max-min fairness (MMF)-degree of freedom (DoF) of RSMA is derived and shown to provide gains compared with the conventional strategy. The MMF beamforming optimization problem is formulated and solved using the weighted minimum mean square error (WMMSE) algorithm. Physical layer design and link-level simulations are also investigated. RSMA is demonstrated to be very promising for multigroup multicast and multibeam satellite systems taking into account CSIT uncertainty and practical challenges in multibeam satellite systems. Next, we extend the scope of research from multibeam satellite systems to satellite- terrestrial integrated networks (STINs). Two RSMA-based STIN schemes are investigated, namely the coordinated scheme relying on CSI sharing and the co- operative scheme relying on CSI and data sharing. Joint beamforming algorithms are proposed based on the successive convex approximation (SCA) approach to optimize the beamforming to achieve MMF amongst all users. The effectiveness and robustness of the proposed RSMA schemes for STINs are demonstrated. Finally, we consider RSMA for a multi-antenna integrated sensing and communications (ISAC) system, which simultaneously serves multiple communication users and estimates the parameters of a moving target. Simulation results demonstrate that RSMA is beneficial to both terrestrial and multibeam satellite ISAC systems by evaluating the trade-off between communication MMF rate and sensing Cramer-Rao bound (CRB).Open Acces
    corecore