1,434 research outputs found

    Computational Complexity Optimization on H.264 Scalable/Multiview Video Coding

    Get PDF
    The H.264/MPEG-4 Advanced Video Coding (AVC) standard is a high efficiency and flexible video coding standard compared to previous standards. The high efficiency is achieved by utilizing a comprehensive full search motion estimation method. Although the H.264 standard improves the visual quality at low bitrates, it enormously increases the computational complexity. The research described in this thesis focuses on optimization of the computational complexity on H.264 scalable and multiview video coding. Nowadays, video application areas range from multimedia messaging and mobile to high definition television, and they use different type of transmission systems. The Scalable Video Coding (SVC) extension of the H.264/AVC standard is able to scale the video stream in order to adapt to a variety of devices with different capabilities. Furthermore, a rate control scheme is utilized to improve the visual quality under the constraints of capability and channel bandwidth. However, the computational complexity is increased. A simplified rate control scheme is proposed to reduce the computational complexity. In the proposed scheme, the quantisation parameter can be computed directly instead of using the exhaustive Rate-Quantization model. The linear Mean Absolute Distortion (MAD) prediction model is used to predict the scene change, and the quantisation parameter will be increased directly by a threshold when the scene changes abruptly; otherwise, the comprehensive Rate-Quantisation model will be used. Results show that the optimized rate control scheme is efficient on time saving. Multiview Video Coding (MVC) is efficient on reducing the huge amount of data in multiple-view video coding. The inter-view reference frames from the adjacent views are exploited for prediction in addition to the temporal prediction. However, due to the increase in the number of reference frames, the computational complexity is also increased. In order to manage the reference frame efficiently, a phase correlation algorithm is utilized to remove the inefficient inter-view reference frame from the reference list. The dependency between the inter-view reference frame and current frame is decided based on the phase correlation coefficients. If the inter-view reference frame is highly related to the current frame, it is still enabled in the reference list; otherwise, it will be disabled. The experimental results show that the proposed scheme is efficient on time saving and without loss in visual quality and increase in bitrate. The proposed optimization algorithms are efficient in reducing the computational complexity on H.264/AVC extension. The low computational complexity algorithm is useful in the design of future video coding standards, especially on low power handheld devices

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Joint On-the-Fly Network Coding/Video Quality Adaptation for Real-Time Delivery

    Get PDF
    This paper introduces a redundancy adaptation algorithm for an on-the-fly erasure network coding scheme called Tetrys in the context of real-time video transmission. The algorithm exploits the relationship between the redundancy ratio used by Tetrys and the gain or loss in encoding bit rate from changing a video quality parameter called the Quantization Parameter (QP). Our evaluations show that with equal or less bandwidth occupation, the video protected by Tetrys with redundancy adaptation algorithm obtains a PSNR gain up to or more 4 dB compared to the video without Tetrys protection. We demonstrate that the Tetrys redundancy adaptation algorithm performs well with the variations of both loss pattern and delay induced by the networks. We also show that Tetrys with the redundancy adaptation algorithm outperforms FEC with and without redundancy adaptation

    An efficient rate control algorithm for a wavelet video codec

    Get PDF
    Rate control plays an essential role in video coding and transmission to provide the best video quality at the receiver's end given the constraint of certain network conditions. In this paper, a rate control algorithm using the Quality Factor (QF) optimization method is proposed for the wavelet-based video codec and implemented on an open source Dirac video encoder. A mathematical model which we call Rate-QF (R - QF) model is derived to generate the optimum QF for the current coding frame according to the target bitrate. The proposed algorithm is a complete one pass process and does not require complex mathematical calculation. The process of calculating the QF is quite simple and further calculation is not required for each coded frame. The experimental results show that the proposed algorithm can control the bitrate precisely (within 1% of target bitrate in average). Moreover, the variation of bitrate over each Group of Pictures (GOPs) is lower than that of H.264. This is an advantage in preventing the buffer overflow and underflow for real-time multimedia data streaming

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 Ă— 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    A High performance and low cost hardware arcitecture for H.264 transform and quantization algorithms

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of forward transform and quantization and inverse transform and quantization algorithms used in H.264 / MPEG4 Part 10 video coding standard. The hard-ware architecture is based on a reconfigurable datapath with only one multiplier. This hardware is designed to be used as part of a complete low power H.264 video coding system for portable appli-cations. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 81 MHz in a Xilinx Virtex II FPGA and it is verified to work at 210 MHz in a 0.18´ ASIC implementation. The FPGA and ASIC implementations can code 27 and 70 VGA frames (640x480) per second respectively
    • …
    corecore