3 research outputs found

    Enabling Computational Intelligence for Green Internet of Things: Data-Driven Adaptation in LPWA Networking

    Get PDF
    With the exponential expansion of the number of Internet of Things (IoT) devices, many state-of-the-art communication technologies are being developed to use the lowerpower but extensively deployed devices. Due to the limits of pure channel characteristics, most protocols cannot allow an IoT network to be simultaneously large-scale and energy-efficient, especially in hybrid architectures. However, different from the original intention to pursue faster and broader connectivity, the daily operation of IoT devices only requires stable and low-cost links. Thus, our design goal is to develop a comprehensive solution for intelligent green IoT networking to satisfy the modern requirements through a data-driven mechanism, so that the IoT networks use computational intelligence to realize self-regulation of composition, size minimization, and throughput optimization. To the best of our knowledge, this study is the first to use the green protocols of LoRa and ZigBee to establish an ad hoc network and solve the problem of energy efficiency. First, we propose a unique initialization mechanism that automatically schedules node clustering and throughput optimization. Then, each device executes a procedure to manage its own energy consumption to optimize switching in and out of sleep mode, which relies on AI-controlled service usage habit prediction to learn the future usage trend. Finally, our new theory is corroborated through real-world deployment and numerical comparisons. We believe that our new type of network organization and control system could improve the performance of all green-oriented IoT services and even change human lifestyle habits

    Optimization-Based Methodology for the Exploration of Cyber-Physical System Architectures

    Get PDF
    In this thesis, we address the design space exploration of cyber-physical system architectures to select correct-by-construction configuration and interconnection of system components taken from pre-defined libraries. We formulate the exploration problem as a mapping problem and use optimization to solve it by searching for a minimum cost architecture that meets system requirements. Using a graph-based representation of a system architecture, we define a set of generic mixed integer linear constraints over graph vertices, edges and paths, and use these constraints to instantiate a variety of design requirements (e.g., interconnection, flow, workload, timing, reliability, routing). We implement a comprehensive toolbox that supports all steps of the proposed methodology. It provides a pattern-based formal language to facilitate requirements specification and a set of scalable algorithms for encoding and solving exploration problems. We prove our concepts on a set of case studies for different cyber-physical system domains, such as electrical power distribution networks, reconfigurable industrial production lines and wireless sensor networks
    corecore