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Abstract

Embedded electronics becomes pervasive, and its tight integration with modern mechanical,

thermal, chemical, biological, and other systems shows promise of making the resulting

cyber-physical systems (CPS) more capable and efficient, outperforming their predecessors.

Existing engineering practices, however, often fall short of coping with the complexity of

CPS design. One of the dominant reasons is the inability of foreseeing the impact of the

decisions made in the early stages of the design process, i.e., in the concept design phase,

on the final implementation. A major bottleneck is the lack of abstractions and formalisms

that are able to capture heterogeneous system requirements and enable efficient co-design.

Therefore, methodologies and tools that provide such abstractions and generate high-level

cyber-physical system architectures with correctness guarantees become highly desirable.

This dissertation seeks to advance the state of the art in cyber-physical system design by

proposing a novel exploration methodology for system architectures at a high level of abstrac-

tion. We leverage optimization techniques to select correct-by-construction configuration

and interconnection of components taken from predefined libraries, while meeting a set of

system requirements and minimizing a cost function. Using a graph-based representation of

the system architecture, we identify a generic basis of the exploration problem as a common

semantic domain that includes a set of decision variables and mixed integer linear constraints

over graph vertices, edges and paths. On top of this basis, we are able to instantiate a variety of

CPS design requirements, such as interconnection, flow balance, timing, reliability, workload,

routing and energy. Our resulting mathematical formulation includes the topology selection

problem, i.e., whether a “virtual” component should be used in the final configuration and

how it is connected to other components, and the mapping problem, i.e., which “real” library

component best implements the “virtual” one.

To foster the scalability of our approach, we propose a set of algorithms for efficiently formu-

lating and solving exploration problems. In particular, we automatically generate compact,

yet approximate, encodings of paths in the architecture graph, which restrict the search to a

limited subset of the most promising solutions. This leads to savings of orders of magnitude

in terms of problem complexity and optimization time, at a small cost in terms of optimality,

making it possible to find solutions to otherwise impractical problems. Besides the monolithic

optimization with respect to a set of constraints capturing all specified system requirements,

we also investigate iterative optimization schemes. In the latter, the solver is called iteratively

on smaller problem instances including only a subset of constraints to generate candidate

configurations. Their validity is then checked against the other constraints via exact analysis
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methods, and in the case of violation a conflict-driven learning function is called to incre-

mentally add new constraints to the original formulation, prune the search space and rapidly

progress towards a feasible solution.

We have implemented ARCHEX 2.0, an extensible framework that supports all steps of the

proposed methodology. Its software structure is modular and amenable to extensibility and

design reuse. To simplify the problem specification, we propose a pattern-based formal

language. It allows for automatic translation of high-level requirements into appropriate

mixed integer linear constraints, which provides large savings in terms of development time

and guarantees the correctness of the generated specification. Provided requirement patterns

have clear semantics and support a rich set of cyber-physical system properties, thus ensuring

the expressiveness of the framework.

We perform an extensive numerical evaluation of the proposed methodology on a set of

CPS applications of industrial relevance. In particular, we demonstrate the efficiency of

ARCHEX 2.0 on reliability-driven designs of aircraft electrical power distribution networks and

reconfigurable manufacturing systems. We then investigate the capabilities of the approach

in the wireless networking domain by synthesizing topologies and node placements for data

collection and localization networks of realistic size. Our results confirm the expressiveness,

extensibility, usability and scalability of the proposed techniques and tools. These important

characteristics allow the methodology to effectively address the challenges of the concept

design stage of cyber-physical systems.

Key words: design space exploration, architecture exploration, optimization, design method-

ology, cyber-physical systems, embedded systems, wireless sensor networks, internet of things.

Copyright: 2018, by Dmitrii Kirov.

iv



Contents

Abstract iii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Cyber-Physical System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Theory and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 CPS Design Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Architecture Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Preliminaries 21

2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Architecture, Template, Topology Configuration . . . . . . . . . . . . . . . 21

2.1.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Paths, Routing, Functional Flow . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Basis of the Exploration Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Mapping Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Path Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Using the Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Associating Template and Library Attributes . . . . . . . . . . . . . . . . . 32

2.3.2 Formalizing Application Requirements on Top of the Basis . . . . . . . . 33

2.3.3 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Standard Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Approximate Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



Contents

3 Exploration Methodology 41

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Application Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Number of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Interconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Balance and Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.4 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.5 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.6 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.7 Link Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.8 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.9 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Mapping Specifications to Implementations . . . . . . . . . . . . . . . . . . . . . 60

3.4 Solving and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Approximate Encoding of Network Paths . . . . . . . . . . . . . . . . . . . 63

3.5.2 Iterative Optimization and Learning . . . . . . . . . . . . . . . . . . . . . . 65

4 ARCHEX 2.0: Architecture Exploration Framework 69

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Pattern-Based Requirement Specification . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Structure of the Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Main Components and Data Structures . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Extension for Wireless Networks . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Using ARCHEX: Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Creating the Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.2 Solving the Exploration Problem . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.3 Additional Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Reliability-Driven Design of Industrial Cyber-Physical Systems 97

5.1 Aircraft Electrical Power Distribution Network . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Overview and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.3 Iterative Optimization: MILP Modulo Reliability . . . . . . . . . . . . . . . 102

5.1.4 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Reconfigurable Manufacturing System . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Overview and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.3 Optimization Results and Performance Analysis . . . . . . . . . . . . . . . 114

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vi



Contents

6 Optimized Topology Selection and Component Sizing for Wireless Networks 123

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Specification and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.1 Data Collection Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.2 Localization Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.3 Scalability and Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Improving the Wireless Channel Model . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.2 Received Signal Strength Measurements in Indoor Environments . . . . 133

6.3.3 Statistical Characterization of the 2.4 GHz Radio Channel . . . . . . . . . 137

6.3.4 Proposed Improvements for the Channel Model . . . . . . . . . . . . . . . 138

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Conclusions and Future Work 145

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2.1 Theory and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography 153

vii





List of Figures

1.1 Examples of complex cyber-physical systems. . . . . . . . . . . . . . . . . . . . . 2

1.2 Summary of the contributions provided by the dissertation. . . . . . . . . . . . . 9

1.3 Impact of the proposed architecture exploration methodology. . . . . . . . . . . 11

1.4 Proposed architecture exploration approach positioned within the cross-layer

cyber-physical system design methodology. . . . . . . . . . . . . . . . . . . . . . 12

2.1 Topology selection example: from reconfigurable template T to topology config-

uration E∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Mapping of “virtual” components from template T of the architecture to “real”

devices from a library L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Example of a network path πq , and corresponding path variables wπq
and yπ

q

for nodes and edges of the graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Examples of (a) functional link F and (b) functional flow F. . . . . . . . . . . . . 27

2.5 Examples of correct and invalid mapping scenarios. . . . . . . . . . . . . . . . . 30

2.6 Path constraints: (a) Using balance equation C (yπ)T = zπ for generating paths;

(b) Examples of paths with loops satisfying the balance equation. . . . . . . . . 32

2.7 Examples of defining application constraints RA using variables from the basis

of the exploration problem: (a) Flow balance constraint; (b) Timing constraint. 35

3.1 Separation of concerns within the proposed architecture exploration methodol-

ogy: topology selection problem, mapping problem and final architecture. . . . 42

3.2 Flow of the proposed architecture exploration methodology: specification, en-

coding, solving, analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Example of path difference constraints: (a) Single difference; (b) Disjoint edges;

(c) Disjoint nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Example of reachability constraints in a wireless network. . . . . . . . . . . . . . 59

4.1 Overview of the ARCHEX 2.0 framework. . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Execution flow of ARCHEX: inputs, outputs, sequence of main method calls and

related dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Pattern-based formal language as an intermediate level between requirements

expressed in a natural language and the underlying MILP representation. . . . 75

4.4 Simplified class diagram of ARCHEX highlighting the relations between the main

components of the framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

ix



List of Figures

4.5 Wireless extension of ARCHEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 A simplified FMS of a high-wing, twin-engine aircraft. . . . . . . . . . . . . . . . 88

4.7 Visualization of the solution (architecture graph) in ARCHEX. . . . . . . . . . . . 92

5.1 (a) Power distribution of Boeing 787; (b) Simplified single-line diagram of an

electrical power distribution network (EPN). . . . . . . . . . . . . . . . . . . . . . 98

5.2 EPN architectures generated by ARCHEX using monolithic and iterative opti-

mization techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Example of a reconfigurable manufacturing system (RMS). . . . . . . . . . . . . 111

5.4 RMS architectures generated by ARCHEX: (a) No reliability or timing constraints;

(b) Same reliability constraint forΩ1 andΩ2; (c) Tighter reliability constraint for

Ω2; (d) Timing constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Template T (a) and generated topology (b) of the data collection WSN. . . . . . 128

6.2 Template T (a) and generated node placement (b) for the localization network. 130

6.3 WSN node mutual placement scenarios (exemplified in a corridor). . . . . . . . 135

6.4 Comparing analytical and empirical log-distance curves for WSN data. (a) Corri-

dor1, “Single wall” scenario (b) Hall, “Single wall” scenario (c) Corridor1, “Com-

bined” scenario (d) Corridor2, “Middle” scenario (e) Corridor1, “Middle” sce-

nario (f) Corridor2, “Two walls” scenario. . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Comparison of log-distance empirical curves for WSN data. (a) “Single wall”

scenario (b) “Combined” and “Two walls” (c) “Middle”. . . . . . . . . . . . . . . . 137

x



List of Tables

4.1 List of requirement patterns supported by ARCHEX 2.0 grouped by type. . . . . 79

5.1 Summary of templateT and libraryL for the aircraft electrical power distribution

network example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Number of MILP constraints and variables, number of iterations, reliability

analysis and solver time for different EPN architecture sizes generated using

integer linear programming modulo reliability (MILP-MR). . . . . . . . . . . . . 109

5.3 Number of MILP constraints and variables, problem generation (setup) and

solver times for different EPN architecture sizes generated using monolithic

optimization with approximate reliability constraints. . . . . . . . . . . . . . . . 109

5.4 Problem complexity (number of constraints and variables) and solver time for

exploration problems with different sizes of library L and a fixed-size template

T (20 nodes) solved using monolithic and iterative optimization approaches. . 109

5.5 Summary of template and library for the RMS example. . . . . . . . . . . . . . . 113

5.6 Numerical results for generated RMS architectures: cost, reliabilities, idle rate. 116

5.7 Problem complexity and solver time for RMS design examples. . . . . . . . . . . 116

6.1 Summary of the WSN platform library L. . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Final number of nodes, dollar cost, average node lifetime and solver time for a

data collection WSN optimized for different objectives. . . . . . . . . . . . . . . 129

6.3 Final number of nodes, dollar cost, average number of reachable anchors by the

mobile node, and solver time for a localization network optimized for different

objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4 Number of constraints and solver time for different network architecture sizes

generated by using the approximate path encoding algorithm (K ∗ = 10) com-

pared to full enumeration of paths. . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Costs and solver times for data collection networks synthesized for different

values of K ∗, compared with the optimal solution. . . . . . . . . . . . . . . . . . 132

6.6 MLE for data agglomerates across all measurement scenarios . . . . . . . . . . . 138

xi





1 Introduction

This chapter unveils the motivation for the work presented in this dissertation, outlines the

objectives and the main results. We first identify the role of architecture exploration in a hierar-

chical design flow of cyber-physical systems and discuss its main challenges. We then summarize

the optimization-based approach that we apply to tackle the architecture exploration problem,

highlight the main contributions and put them in the context of related work. Finally, we

outline the structure of the dissertation and preview the contents of subsequent chapters.

1.1 Cyber-Physical System Architecture

The rapid development of embedded electronics and communication networks has led to

the transformation of various existing mechanical systems, such as lighting, HVAC, power

distribution, building automation or car braking, to cyber-physical systems (CPS). Being tra-

ditionally separated from each other, computation, communication and control are instead

tightly coupled in a CPS. A large body of emerging, “smart” applications (e.g., cars, aircrafts,

buildings on Figure 1.1a-c) are developed on distributed platforms with a tight integration

between “cyber” (e.g., computation, networking) and “physical” (e.g., pneumatic, hydraulic)

parts [37, 97]. The latter is monitored and controlled by the former using a set of sensors

and feedback loops, so that physical processes affect computations and vice versa. This is

an important distinction from traditional, “previous generation” electromechanical systems,

which are typically characterized by unidirectional dependencies between the two domains.

The intention of consolidating previously separated cyber and physical worlds in one system

gave birth to new, unforeseen challenges that brought the design and the verification of CPS

to another level of complexity. In particular, existing abstractions used in embedded systems

design fail to accurately capture the timing behavior of programs, which does not affect the

semantic correctness of the latter, but may violate the correctness of the system [71]. Another

paramount reason is the increased heterogeneity of components, because in a CPS one has to

deal both with electronic (computational) and physical sides. To capture the behavior of the

former, designers typically use discrete-event, dataflow, synchronous-reactive, state machine,

process network and other models of computation [37]. The latter, instead, is often expressed

using differential equations, i.e., continuous, dynamic models.

1



Chapter 1. Introduction

(a)

(b) (c)

Figure 1.1 – Examples1of complex cyber-physical systems: (a) There are almost 100 electronic
control units (ECUs) in a premium car, while millions of lines of code are required to program
them, and several kilometers of wiring are needed to interconnect them; (b) Many subsystems
of modern passenger aircrafts (e.g., power distribution, fuel management, environmental
control) are tightly coupled with an increasing number of electronic components; (c) In a
“smart” building, a large number of systems (e.g., adaptive lighting, HVAC, firefighting, security)
are built on networked sense-and-control platforms.

The heterogeneous nature of cyber-physical systems has immediately revealed the lack of

interoperability between existing design instrumentation (e.g., simulators, verification tools,

requirement engineering tools) that captures different cyber and physical aspects of the

system. Moreover, it drastically raised the need of mathematical formalisms and abstractions

that could serve as a “common ground” for different system aspects - functional and non-

functional, static and dynamic, electronic and physical. Consequently, methodologies and

tools that can provide these abstractions for efficient synthesis, verification and performance

evaluation of such heterogeneous, hybrid CPSs become highly desirable. Indeed, as the

systems get more and more complex, especially with respect to stringent reliability and safety

requirements, a major productivity gain in CPS design becomes essential for many industries.

1Sources: (a) www.linkedin.com, by Eric Walz; (b) www.boeing.com; (c) www.commscope.com.
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1.2. Motivation and Objectives

Therefore, systems companies (e.g., avionics and automotive) are increasingly aiming at

automating their design processes using the novel computer-aided design (CAD) tools for

CPS, same as semiconductor industry did several decades ago to cope with complexity of VLSI

design. In turn, electronic design automation (EDA) vendors today pay more attention to

system design.

Another concern is the level of interdisciplinary experience required in cyber-physical system

design. Today, being a system designer requires lots of cross-domain knowledge and simultane-

ous reasoning about different heterogeneous requirements. That is, embedded and physical

system engineers have to go beyond their primary domains in order to understand each

other, cooperate, create design specifications, run the design space exploration, synthesis,

performance analysis, verification and validation of CPSs. Apart from gaining new necessary

skills, this also prompts the development of novel methodologies and supporting tools for

facilitating specification, solving and debugging of CPS design problems, as well as easing up

the communication between different working groups and companies.

It has been argued in the recent decades that the design of complex heterogeneous systems

has to be carried out in a hierarchical, compositional way as a sequence of refinement steps

between different levels of abstraction [114, 115, 98, 96]. This dissertation focuses on high-

level architectural aspects of CPS design. In this context, we regard the cyber-physical system

architecture as a network of interconnected components that represent both electronic and

physical parts of the system. We tackle the concept design stage that deals with the selection

of these components and connections, while meeting a set of system requirements, such as

timing, reliability or power consumption. This stage is essential, because being able to capture

important system aspects as early as possible in the design flow allows us to provide certain

correctness guarantees to subsequent steps, thus reducing the chances of errors, requirement

violations and lengthy redesign cycles. At the same time, architecture exploration is a search

over a huge space of potential configurations, which grows with the number of requirement

types being captured. Therefore, it asks for finding proper abstractions and formalisms to

express the requirements, meaningful partitioning of design concerns, so that exploration

problems are tractable, and efficient tools to conduct the search.

1.2 Motivation and Objectives

Cyber-physical system design is heavily influenced by decisions made in the early stages of

the design, when their impact is still hard to foresee. In particular, architecture exploration

today is the domain of experienced architects, that often have to take risky decisions based

solely on their heuristic evaluations and accrued knowledge. Such ad hoc design practices

often result in severe safety violations, countless redesign iterations, missing the time-to-

market and financial losses. The major bottleneck for fostering the design process is the

lack of comprehensive frameworks for scalable, multi-dimensional architecture exploration

under heteronegenous CPS requirements (e.g., connectivity, safety, reliability, timing, energy,

workload and others). High-fidelity simulations and prototype testbeds are typically leveraged
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to achieve reasonable accuracy in performance and cost estimations of an architecture that

has been already worked out. However, using these approaches for design exploration and

synthesis can become very time-consuming and, therefore, limited in the number of evaluated

configurations. Clearly, CPS design would substantially benefit from methodologies and tools

for automatic generation of system architectures with correctness guarantees.

In general, one can classify architecture exploration approaches to three groups that can be

distinguished by the ability of their members to tackle the following questions:

1. Does the current architecture meet the requirements? These approaches do not conduct

the actual search, but only evaluate the performance of a given architecture. The

most typical techniques are simulation, prototyping and system description languages

(e.g., [100, 9]). The exploration can be performed pointwise, i.e., by evaluating a set of

selected points in the design space.

2. Is there any architecture that meets the requirements? This group targets feasible solu-

tions that satisfy the given constraints. It is mainly represented by symbolic constraint

safisfaction techniques, further discussed in Section 1.4.

3. Which is the best feasible architecture with respect to a cost function? In contrast with the

previous group, the ultimate goal of these methods is to identify the optimal architecture

which satisfies the given requirements, while minimizing a cost function. Therefore,

corresponding approaches deal with optimization problems.

The first group includes a number of widely adopted languages and instruments (e.g., [100,

119, 107, 30, 86]), that are able to capture a variety of high-level concerns, both from cyber

and physical realms. However, they are commonly focused on high-accuracy performance

evaluation and analysis and have limited design exploration capabilities. In contrast, the

two remaining groups rather focus on design space exploration and automated synthesis.

However, there are still only few tools that target feasible [101, 90] and optimized [12, 108, 40,

87] conceptual designs in the CPS domain. Being efficient in one particular application, some

of these tools suggest limited extension capabilities to other classes of systems. Furthermore,

very few of them focus on usability, i.e., on providing languages and interfaces for low-effort

specification of complex design problems. This is a significant concern, since it aims at

keeping the underlying formalisms transparent to the designers and allows them to focus on

the problem domain.

In general, techniques from groups 2 and 3 operate on the same search space, however, opti-

mization tools tend to be more attractive, since they intend to find the best architecture among

feasible ones. For example, apart from determining a valid interconnection of components of

an aircraft electrical power system, these techniques can minimize the total component cost

and/or weight [99, 103]. Similarly, in addition to synthesizing a resilient topology for a wireless

network, in an optimization problem it is possible, for instance, to maximize the lifetime of

components [108].
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Considering all aforementioned points together, the goal of this dissertation is to devise

an optimization-based methodology for the exploration of cyber-physical system architec-

tures. In particular, we aim to provide a representation of a CPS architecture and a general

mathematical formulation that would capture different system-level requirements (e.g., con-

nectivity, timing, energy consumption, routing, reliability) and allow designers to cast explo-

ration problems in different application domains. We further intend to develop an extensible

framework to incorporate the proposed formulation and algorithms, thus facilitating the use

of the methodology among system designers.

Our approach is inspired by the seminal work on reliability-driven optimized architecture

design in the avionics domain [99, 12]. In these works, the authors leverage the mixed integer

linear programming (MILP) techniques for encoding and solving exploration problems. Our

purpose in this thesis is to generalize the techniques and the algorithms from [99, 12] to make

them applicable to different CPS domains. Furthermore, we aim to make existing formulations

richer so that more complex designs are supported, without making the exploration process

expensive. This requires the development of new scalable encoding algorithms and efficient

approximation techniques.

Apart from the static properties, CPS architectures inherently possess various characteristics

that have to be evaluated in their dynamics. Such characteristics can be related both to the

physical part (e.g., thermal flows, mass flows) and to the cyber part (e.g., timing behaviors),

as well as to the environment (e.g., signal attenuation). Dynamic properties have to be

evaluated in the continuous domain, which entails using different computation models in

the same design. While state-of-the-art simulators for CPS [107, 30, 47] offer the capabilities

of combining versatile models of computation, the situation is different for optimization

problems. Expressions of dynamic properties, that are typically nonlinear, are possible in

some formulations. Yet, despite the higher accuracy of design capture, the corresponding

problems may soon become exceedingly complex and, consequently, impractical. Therefore,

in this work we partition the architectural space and study its part related to static properties

of a CPS. We abstract the dynamic properties (e.g., flow rates, voltage levels, delays) by using

approppriate metrics and approximations, such as steady-state and worst-case values, and

intend to provide efficient algorithms for their encoding as a part of the exploration problem.

Being motivated by existing composite, holistic design methodologies proposed for CPS, such

as [96] or [2], we offer a complementary approach that can be applied in the early design

stages, i.e., at high levels of abstraction and at first steps in the hierarchy of the design process.

Further evaluation, sizing and optimization of dynamic properties can be done on one of the

subsequent stages and/or levels of abstraction.

1.3 Main Contributions

This dissertation provides contributions to the area of design space exploration for cyber-

physical systems. We focus on the concept design of CPS architectures, since the more

concerns are accounted for on the high level, the less errors are made on the lower ones. As
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a result, we develop a methodology for high-level architecture exploration of cyber-physical

systems that performs an efficient search within a space of candidate CPS architectures to find

a feasible one with respect to a set of requirements while minimizing an objective function.

We fortify the methodology with a supporting framework and demonstrate the efficiency

and the scalability of the two on the case studies from different CPS domains. Therefore, as

summarized on Figure 1.2, our contributions can be classified to three groups: Theory and

Algorithms, Tools, and Applications. Each of them is discussed below.

1.3.1 Theory and Algorithms

We provide a mathematical formulation of the exploration problem as an optimized mapping

problem, in which all components and interconnections of the system architecture are asso-

ciated with (mapped to) corresponding entities (e.g., devices, wires, links) from pre-defined

libraries. Similarly to the seminal works [99, 12], we employ a generic graph-based represen-

tation of an architecture as a network of components. However, we significantly extend and

generalize previous works in the following directions. First, we offer a new problem formula-

tion that separates the topology selection problem, i.e., whether a “virtual” component should

be used in the architecture and how it is connected to others, from the mapping problem, i.e.,

which “real” library component best implements the “virtual” one [62]. This separation of

concerns results in a mixed integer linear program encoding of the exploration problem that

is more general and more efficient than the previously proposed one [99, 12].

We further introduce a generic basis of the exploration problem - a common semantic domain

that includes a set of binary decision variables denoting the presence/absence of edges and

paths between the nodes of the architecture graph, and the mapping of graph elements to

library components. We then associate these variables to each other with a set of generic

MILP constraints and show how they can be used to instantiate a variety of CPS requirements,

such as interconnection, reliability, timing, flow, workload, energy consumption, routing and

others. In other words, exploration problem formulations for different CPS domains can be

built and customized atop the proposed basis. It is also used to establish the dependency

between the two problems (topology selection and mapping), i.e., both of them are expressed

using the same decision variables and can be jointly solved as a single optimization problem.

On the algorithmic part, we generalize the two techniques proposed in [12] for solving opti-

mization problems to use them in different applications. The first technique is a monolithic

optimization with all specified constraints (and possible approximations). The second one is

an iterative scheme, in which smaller sub-problems are solved at every iteration and heuristic

functions are applied for exact analysis and learning new constraints.

We further propose an algorithm for generating more compact, yet approximate, encoding

of network paths between pairs of source and destination components. It relies on the Yen’s

K-shortest path routine [128] to propose a smaller number of candidate network paths, as

opposed to their exhaustive enumeration. This restricts the search to a limited subset of
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most promising solutions and leads to savings of orders of magnitude in terms of problem

complexity and optimization time, at a small cost in terms of optimality. Differently from the

works that apply heuristic approaches for synthesizing large-scale architectures [108, 104],

our algorithm allows to leverage the empirical advances of state-of-the-art MILP solvers for

dealing with otherwise impractical problems.

Finally, based on the proposed separation of concerns, the generic basis of the exploration

problem and the algorithms, we form up a methodology for CPS architecture exploration.

The methodology allows us to jointly select system topology and its implementation, and

consists of four main steps. On the first step, architecture requirements are written down

using an extensible set of patterns, which significantly simplifies the specification. Also the

structure of the exploration problem and the platform library are initialized. Second step

deals with encoding the specification into a mixed integer linear program. The architecture

template, i.e., the set of all possible topology implementations, the library of components and

the association between the two are all established using the aforementioned generic basis.

The formulation is then filled in with the application constraints and the cost function, all

in the form of MILP expressions on top of the basis. The solving stage then leverages one of

the algorithms mentioned above (monolithic or iterative) to generate the system architecture.

After the optimization process (and also between the iterations), analysis techniques (e.g.,

reliability, timing, workload) are applied for static verification and performance evaluation.

All steps of the methodology are further detailed in Chapter 3.

1.3.2 Tools

We introduce ARCHEX 2.0 [62], an extensible framework for formulating and solving CPS archi-

tecture exploration problems with the proposed methodology. It builds on a prototype toolbox

for optimized selection of reliable architectures of aircraft electrical power systems proposed

in [12]. With respect to its predecessor, ARCHEX 2.0 has been significantly re-engineered,

and a number of novel features have been added. In particular, its software infrastructure

now relies on a set of abstract classes and reusable data structures that can be customized to

instantiate architecture exploration problems in different domains of CPS. Existing concepts

(e.g., reliability constraints, interconnection constraints) have been generalized, moreover,

many other design concerns (e.g., timing, workload, energy) are now also supported, all based

on the aforementioned generic basis. The framework is also augmented with new encoding

algorithms (e.g., for network path encoding) and analysis techniques.

To lower the problem formulation effort, we have implemented a pattern-based formal lan-

guage for requirement specification. It encompasses an extensible set of patterns that can be

used to express requirements on the architecture, which are then automatically translated

into mixed integer linear constraints. This provides large savings in terms of development

time and guarantees the correctness of the generated specification. Furthermore, designers

can customize the framework to implement new patterns, thus supporting broader categories

of cyber-physical systems.
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One notable application domain of ARCHEX 2.0 is wireless networking, which is becoming

the primary communication infrastructure in networked CPS. In [63] we have implemented

and evaluated a large extension of the framework to support topology synthesis problems for

wireless networks. This extension leverages the same semantic domain (basis), in particular,

by actively using network paths in the formulation, a map of network deployment area and a

set of channel models to accurately determine the operating conditions of network designs.

In the scope of wireless design problems, we also contribute to the improvement of conven-

tional channel models used in network simulators and other related tools. In [64] we have

conducted a statistical characterization of the 2.4 GHz radio channel in indoor office envi-

ronments in order to verify the accuracy of the log-distance [110] channel model. Based on a

huge measurement campaign of collecting the signal strength data in different realistic indoor

spaces and node placement scenarios, we were able to propose a set of improvements for the

log-distance model (and other affiliated ones) that could improve the accuracy of signal path

loss estimation. We report on the results in Chapter 6 and implement them in ARCHEX 2.0.

To a greater extent, the impact of these improvements can be observed in simulation tools,

which is future work.

1.3.3 Applications

We apply our methodology and framework to several different case studies to demonstrate

the expressiveness, the usability, the extensibility and the scalability of our approach. Two

of them refer to the avionics domain. We first try out a simplified example of an aircraft

fuel management system to demonstrate the design flow with ARCHEX 2.0. We then run an

extensive numerical evaluation on a case study of aircraft electrical power distribution network

with stringent safety and reliability constraints, previously introduced in [99]. With respect to

previous work, we are able to efficiently generate more complex and realistic architectures,

while achieving a better performance and smaller complexity of the problem formulation.

The methodology is then applied to another industrial domain, factory automation. We use

our approach to generate architectures for reconfigurable manufacturing systems subject to

balance, workload, timing and reliability constraints. Same as for the power distribution net-

work case study, we evaluate both monolithic and iterative techniques of solving optimization

problems, discussing their advantages and drawbacks in the scope of the factory automation

case study and related design requirements.

Finally, we conduct extensive experimentation in the wireless domain. We leverage ARCHEX

2.0 for synthesizing topologies and node placement for data collection and localization

wireless sensor networks. In particular, in these applications we study the capabilities of

the proposed approximate path encoding algorithm. Our results confirm the applicability

of our optimization-based methodology to large-scale network designs, which are a crucial

component of today’s IoT applications.

8



1.3. Main Contributions

Tools 

Applications 

Theory 
Algorithms 

Aircraft electrical power 
distribution network

Aircraft fuel 
management 
system (draft)

Reconfigurable 
manufacturing 

system

• MILP with approximate 
reliability (monolithic)

• MILP modulo reliability 
(iterative)

Algorithms

Constraints
• Interconnection
• Balance
• Reliability 

• Workload
• Timing
• Energy consumption
• Routing
• Link quality
• Localization 

Constraints

Algorithms
Approximate encoding 
of network paths

Generic basis 
(common semantic domain)

• Set of variables that 
define the architecture: 
links, paths, mapping

• Constraints for network 
paths

• Mapping to a library of 
components

ArchEx 2.0 
ArchEx

• Reliability analysis
• Monolithic and iterative 

solving techniques
• Learning new 

constraints to improve 
reliability of the system Pattern-based 

language

Wireless extension

• Protocol models
• Floor plan support
• Channel models
• Experimental studies 

of the channel and 
improved models

Framework
• Re-engineered
• Reusable
• Extensible 

Extended version 
(support of more 

complex topologies)
Wireless sensor 

networks: 

• Data collection
• Localization

Topology 
selection 
problem

Mapping 
problem

Topology selection 
+

mapping

- Previous work by Nuzzo et al. [99], Bajaj et al. [12].

- Contributions of this dissertation, published in [62-64].

Figure 1.2 – Summary of the contributions provided by the dissertation.
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1.4 Related Work

The term “cyber-physical system architecture” can assume different meanings in different

contexts, i.e., it can include a variety of aspects, ranging from the number, type and dimensions

of components, including both the embedded system and the physical plant, to software,

e.g., control algorithms. As mentioned above, in this dissertation we are taming the concept

architecture design of CPS, while relying on the notion of the architecture that only involves

components and their interconnections, as formally defined in Chapter 2. Therefore, this

section is dedicated to the discussion of existing techniques and tools adapted to or suitable

for the exploration of these high-level architectures, while some other aspects, e.g., control

design, are out of scope of this work. Yet, some techniques that we touch upon are applicable

to different design phases, however, we only discuss them in the context of architecture

exploration.

1.4.1 CPS Design Methodologies

System architecture selection and evaluation is pivotal in well-known design methodologies

for embedded systems [114, 16, 72], which were recently extended to CPS design [98, 59,

2]. Indeed, in platform-based design [114], the set of all architectures that can be built out

of a library (collection) of components forms a design platform, while the exploration is

carried out as a mapping of functional requirements onto available implementations at each

level of abstraction. In turn, contract-based design [16, 115] provides a formal framework

of assume-guarantee contracts that is used for verifying the compatibility of components

in an architecture as well as the consistency of the specification. Actor-oriented design [72]

advocates for co-simulation of different aspects of the architecture and the control algorithm

defined using a set of computation models, at different abstraction layers.

More recently, a compositional design methodology for CPS has been proposed [98, 96],

based on platform- and contract-based paradigms. In this approach, requirements for system

architecture and control protocol are partitioned according to their contracts CT and CC , and

then separately designed, while it has been shown in [99] that if both CT are CC are satisfied,

then the assembled system is guaranteed to satisfy the system contract CS . A simulation-

based design space exploration is then performed using continuous-time or hybrid behavioral

models to jointly assess the architecture and the controller at a lower abstraction level. The

exploration methodology presented in this thesis can be directly applied at the corresponding

design stage (architecture selection) to search for the optimal implementation that satisfies

the contract CT of the architecture. In other words, it is proposed as one step in the hierarchy

of a holistic cross-layer design flows, as illustrated on Figure 1.3 and Figure 1.4.

Similarly, as also shown on Figure 1.3, our approach can be used at the top level of the V-

model [2], that is applied in some industrial domains, e.g., avionics and automotive. This

model suggests a top-down design process, starting from high-level system-wide architecture

(exactly, what our methodology is developed for) and moving through the subsystem design to
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Figure 1.3 – Impact of the proposed architecture exploration methodology: our techniques
can be applied at a high level of abstraction within holistic flows used in CPS design.

individual components. These steps are followed by a bottom-up integration and verification

process, i.e., the last step is verifying the system as a whole. Different subsystems (e.g.,

mechatronic, electronic) are typically designed and manufactured by different suppliers. To

ensure their correct integration at later stages and to avoid possible errors, requirements

for these subsystems have to be provided early in the design by synthesizing a high-level

architecture with correctness guarantees. They can then independently follow their own

technology-oriented design processes, with certain design decisions being constrained by the

capabilities of the top-level architecture.

A holistic model-based design methodology for CPS, proposed in [59], suggests a set of code-

pendent steps that could be iteratively taken to progress towards the final implementation

of the system. Although the approach primarily focuses on hierarchical modeling of hetero-

geneous components for analyzing the behavior and the performance of CPS architectures,

automated synthesis of the latter is also anticipated. Starting from a concept design phase,

the authors propose to select a proper set of computation models, assemble the models

of physical processes and hardware and evaluate the two via simulation. The process is

followed by software synthesis and formal verification of the system at each level of abstrac-

tion. Our techniques can augment several steps of the proposed design flow with generating

correct-by-construction architectures at top levels of abstraction. This is beneficial for the

proposed simulation-based design exploration since the architectural models would have

formal guarantees and bounds on a set of system-level properties.

1.4.2 Architecture Exploration

As mentioned in Section 1.2, one can classify existing architecture exploration approaches

and methods into several groups that use different engines/functions for evaluating system

properties and generating architectures. First, simulation-based group focuses on the analysis

of architectures, i.e., on the evaluation of system performance and behavior. The goal of state-
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to synthesize the optimal architecture, while the requirement formalization stage is enhanced
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of-the-art satisfiability-based approaches is twofold: they can be applied both for verifying

the architecture with respect to certain properties, i.e., for analysis, as well as for locating a

feasible solution in the design space, i.e., for synthesis. Finally, optimization-based techniques

rather focus on synthesis. They intend to explore the feasible space in order to find an

optimal architecture with respect to a given objective. In the following, we overview existing

approaches and tools that belong to one or more of these groups.

Simulation-based approaches. Several modeling languages have been proposed for spec-

ification, design, analysis, verification and validation of complex systems. In particular,

SysML [100] is a UML-based language that removes the software-centric restrictions of the

latter and is actively used in systems engineering in different industrial domains. The Archi-

tecture Analysis and Design Language (AADL) [9], initially developed for the avionics domain,

is used to model both the software and the hardware of embedded real-time systems. Both

SysML and AADL have built-in constructs, views and diagrams for high-level architecture

design, while created models can be verified using conventional techniques, e.g., model

12



1.4. Related Work

checking. MODELICA is a multi-domain modeling language containing different types of

subcomponents (e.g., mechanical, hydraulical, electrical, thermal, electronic and others). CPS

models written in the MODELICA language can be simulated in many available toolboxes, such

as JMODELICA [60] or DYMOLA [36].

CPS architectures can be designed and evaluated with simulation-based tools. In particular,

the ones that are capable of capturing both the properties of the embedded systems and of

the physical plant, are favorable. For example, in Ptolemy II [107] designers can construct

and simulate actor-based models with heterogeneous components by using one of the many

provided computation models, e.g., discrete-event, continuous time, synchronous dataflow,

finite-state machines, and others. The models can be mixed in a hierarchy controlled by

a global scheduler (director). The METRO II framework [30] has been designed based on

the PBD methodology with the intent of addressing the challenges posed by heterogeneous

CPS. It introduces the techniques of representing non-functional quantities and coordinating

different models for performance evaluation. The capabilities of expressing both discrete

and continuous systems are also provided by widely adopted commercial toolboxes, such as

Simulink [119] and LabVIEW [70].

In general, simulation tools are typically focused on performance evaluation of CPS archi-

tectures, rather than on design space exploration. Yet, some approaches are taming the

simulation-based exploration. For example, Metronomy [47] integrates the functional mod-

eling capabilities of Ptolemy II and architectural modeling from METRO II via a mapping

interface and performs design exploration via co-simulation. Finn et al. combine discrete op-

timization routine (MILP) that generates architecture candidates of an aircraft environmental

control system with continuous sizing and optimization, performed using MODELICA [40].

In [87], topologies for body area networks are synthesized by solving a MILP problem in a

loop with running network simulation using the Castalia toolbox [19]. Simulations are used to

verify the candidate topologies and to generate (learn) additional constraints for augmenting

the original formulation and guiding the MILP solver towards a satisfying solution. This is a

kind of “lazy MILP modulo simulation” approach, where the latter is used as a background

theory for verifying the correctness of the topology.

Our approach is, in general, complementary to aforementioned simulation-based techniques

for CPS design, since it intends to generate correct-by-construction architecture candidates

that can be analyzed and verified using simulation models. For example, it can be used in [40]

or [87], since it can fully capture the system requirements from these works. At the same time,

the proposed methodology is more expressive and reusable across different CPS domains,

while MILP formulations from [40, 87] are problem-specific.

In many aspects, model-based approaches are better suited for lower levels of more detailed

design, where many high-level decisions have already been made. When few configurations

out of a small design space have to be carefully evaluated (e.g., for timing or power con-

sumption behaviors), simulators certainly provide greater accuracy. Still, the concept design

stage is also tackled by several approaches [17, 23]. For example, Bhave et al. [17] analyze the
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consistency of a set of high-level architectural models that capture different viewpoints of a

CPS. In contrast, Canedo et al. [23] address the functional space, i.e., they evaluate different

implementations of the same high-level functionality. They propose a functional modeling

compiler that automatically generates a set of architectural models from a functional model,

which are further converted to simulation models and executed by a dedicated toolbox for

performance analysis. In other words, [23] is a simulation-based design space exploration

technique. Still, in many application domains, such exploration may become very expensive

due to a huge number of candidate architectures to be simulated. In this work we opt, instead,

for techniques that perform an efficient search over large high-level design spaces (e.g., wire-

less network topologies, interconnection networks of production machines) to find optimal

solution to be further evaluated and refined, in particular, with simulation models.

Satisfiability-based approaches. Many approaches leverage symbolic constraint satisfaction

techniques, such as Satisfiability Modulo Theories (SMT) [15, 31], for architecture exploration.

The expressiveness of SMT allows it to be applied to rapidly search feasible system config-

urations. For example, Reimann et al. [112] propose an SMT-based approach for efficient

exploration and pruning of the high-level CPS design space under stringent timing constraints.

Kumar et al. [68] address the problem of assigning speeds to resources in a real-time system

with timing and energy constraints by developing an SMT solver with real-time calculus [123]

as a background theory. A number of efficient SMT solvers, such as Z3 [31], openSMT [21] or

Yices [35], as well as a standardized description language, SMT-LIB [14], are available.

SMT typically use first-order, linear background theories, e.g., difference logic or linear arith-

metic overs reals or integers. Some alternative approaches, however, extend the existing

paradigm with non-linear convex theories. For instance, the CalCS toolbox [95] exploits the

information from the solution of convex optimization problems to establish the satisfiability of

conjunctions of convex constraints. CalCS also provides a formulation that allows it to generate

counterexamples, perform conflict-driven learning and approximate non-convex constraints.

Gao et al. [41] developed an SMT solver, dReal, for nonlinear theories (e.g., trigonometric,

exponential) over the reals using efficient relaxation mechanisms. These two approaches are

very attractive to be used for capturing various nonlinear properties of cyber-physical systems,

however, none of them has been applied to CPS design exploration problems as yet.

More recently, a Satisfiability Modulo Convex Optimization (SMC), was proposed by Shoukry

et al. [118]. It uses a lazy combination of SAT solving and convex programming to search for

a satisfying assignment. Even though it uses convex optimization as a background theory,

it is not an optimization technique, since it rather focuses on feasibility problems. Instead,

it intends to leverage state-of-the-art algorithms from both Boolean and convex analysis

domains to extend the application of SMT to nonlinear problems. No case studies in the

CPS domain have yet been proposed for this novel technique, however, we find the approach

attractive, in particular, for architecture exploration problems.

SMT-based design exploration methods provide a clear advantage of being expressive, e.g.,

with respect to Boolean satisfiability (SAT) techniques. Therefore, a large body of CPS architec-
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tural requirements can be naturally captured by an SMT program. Advanced techniques, such

as [95, 41] provide even more capabilities by allowing designers to use nonlinear formulas,

which is very typical for physical processes and phenomena. The performance of SMT, how-

ever, highly depends on the structure of the design exploration problem. For example, if the

majority of the variables is Boolean, few calls are made to the theory solvers, and the SAT solver

can explore the search space very efficiently. On the other hand, SMT techniques can demon-

strate limited scalability on the formulations with large number of real constraints, where they

can be outperformed by state-of-the-art optimization algorithms, such as branch-and-cut

and its extensions.

The SMT formulation of architecture exploration problems is still a non-trivial process, which

requires deep knowledge of underlying mathematical abstractions and understanding the

principles of SMT solvers. The problem has been recently addressed by Peter and Givargis [101],

who proposed a component-based synthesis method for embedded and cyber-physical system

architectures using SMT. They have developed CoDeL, a description language that facilitates

the design specification and automatic translation into an SMT program. The main idea of

CoDeL is similar to our pattern-based language, provided by ARCHEX, since it also significantly

lowers the burden of formulating exploration problems. The main difference is that ARCHEX

uses optimization to find cost-effective solutions, while CoDeL and SMT-based techniques in

general aim at determining a feasible one without minimizing a cost function. Recent research

efforts of applying SMT for solving optimization problems are discussed in the next section.

Other symbolic techniques, in particular, ordered binary decision diagrams (OBDDs) [91], can

be applied for rapidly pruning large high-level design spaces of CPS [90]. Also, symbolic model

checking methods have been used for computing feasibility regions of system parameters

by expanding unsatisfiable execution traces of the system model to cutting planes [27]. The

latter approach has been applied to real-time scheduling, but is very promising also for CPS

architecture design.

Optimization-based approaches. This group of techniques is related to finding a valid high-

level architecture with a minimal cost value (e.g., number or weight of components, energy

consumption, idle time). Corresponding design exploration problems are cast as optimization

problems. In particular, mixed integer linear programming (MILP) is being increasingly

adopted to CPS concept design problems. Some existing approaches fully rely on solving

MILP problems [106, 103, 45], others use MILP in combination with other techniques, such as

heuristic functions for optimization [108], conflict-driven learning functions for pruning the

search space by incrementally generating additional constraints for existing formulation [99,

12], simulation [87] and convex optimization [40]. MILP has NP-hard complexity, in contrast

with linear programming (LP), for which polynomial algorithms exist. There is no standard

commonly adopted solution technique, while existing methods are typically based on LP

relaxations and/or heuristics. Yet, MILP is largely used, and the empirical performance of

state-of-the-art MILP solvers, such as CPLEX [54], Gurobi [48] or MOSEK [89], is impressive.

An optimization-oriented design methodology following the PBD paradigm was proposed
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in [103] for aircraft electrical power systems. In particular, a generic nonlinear formulation

is proposed for the exploration of power system architectures, i.e., for generator selection

and distribution network synthesis. An approximate formulation as a binary optimization

problem with all linear constraints, which can be handled by MILP solvers, is also provided.

In [99] the design flow from [103] is extended to a more holistic approach, which enables

the co-design and synthesis of electrical power system topology and control using contracts.

In particular, the architecture selection problem formulation is augmented with reliability

constraints. In [12] the authors tackle the exponential complexity of enumerating failure states

of the system by proposing two algorithms for solving the exploration problem - MILP with

approximate reliability constraints (a monolithic optimization problem) and MILP modulo

reliability, an iterative technique, in which calls to the optimizer alternate with a heuristic

learning function. Our methodology supports generalized versions of both these algorithms,

which is further discussed in Chapters 3 and 4.

Overall, as already mentioned in Section 1.2, the methodology presented in this dissertation

builds on the works [99, 12] in many aspects. Our additions and extensions include a novel en-

coding that separates the topology selection problem from the mapping problem (Section 3.1),

more general and more efficient mapping mechanism (Section 2.2.1), more types of supported

requirements (Section 3.2), extensible and customizable framework (Chapter 4) and improved

usability facilitated by the pattern-based formal language (Section 4.2).

The authors of [50] proposed an approach of high-level CPS architecture synthesis that re-

sembles an SMT solver, but with an ILP solver as a core instead of SAT. This allowed them to

efficiently solve resource planning and scheduling problem of a large-scale system from the

avionics domain. The key idea in [50] is to separate scheduling constraints from connectivity

and balance constraints. The developed ILP Modulo Scheduling solver was able to quickly

progress towards a feasible solution by solving smaller problems and leveraging a learning

function for checking the schedulability, finding unsatisfiable cores and deriving new lemmas

to be added to the original formulation. This approach was later generalized in [80] to a

rigorous ILP Modulo Theories (IMT) method. In IMT, certain terms in the MILP encoding can

be interfaces to background theories, so that theory solvers can be plugged in to verify them.

IMT provides a sound and complete optimization procedure for the combination of MILP with

stably-infinite theories [80]. The decision procedure, called Branch and Cut Modulo Theory or

BC(T), is an extension of the classical branch and cut, which is the most established family of

algorithms for solving ILP instances. An implementation of a BC(T)-based solver, Inez, has

also been proposed [79]. In our methodology we use an iterative optimization algorithm, in

particular for separation of reliability constraints (MILP modulo reliability, initially proposed

in [12]), so that our approach is in part inspired by the IMT.

Finn et al. [40] developed a mixed discrete-continuous optimization scheme for synthesizing

CPS architectures, which they evaluated on an aircraft environmental control system design.

The authors use a MILP solver (CPLEX) in a loop with a simulator (JMODELICA). The former

proposes architecture candidates by optimizing over a discrete space of component parame-
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ters (e.g., types of ducts), while the latter runs a convex optimization over a continuous space

by using the Nelder-Mead method [92]. The latter is a well known numerical method applied

to nonlinear optimization problems, for which derivatives may not be known. Optimization

with simulation in the loop has been also proposed by Moin et al. [87] for the optimized design

of a human intranet network. A mixed integer linear program generates candidate network

architectures under coarse energy constraints, which are then checked by a discrete-event

network simulator under reliability constraints. Simulation results generate lower bounds

on the power consumption, which are added to the MILP to prune the search space and

achieve faster convergence compared to other state-of-the-art methods, such as simulated

annealing [3].

Pinto et al. [106] proposed a generic MILP formulation for synthesizing wireless network

architectures for building automation and control. The goal is the minimization of the cost of

network nodes under a set of topological, link utilization and link quality (end-to-end delay,

packet error rate) constraints. More recently, Puggelli et al. [108] extended the formulation

from [106] by incorporating different routing patterns (e.g., unicast, multicast) and power

consumption constraints for indoor wireless sensor networks. They explore a broader design

space and solve a more complex optimization problem. However, according to the results

provided in [108], the problem becomes impractical, i.e., no solution is found within a timeout,

for networks of more than 50 end devices. Therefore, the authors also propose a polynomial-

time heuristic algorithm in place of the NP-hard MILP problem that applies Dijkstra’s shortest

path routine for synthesis of large networks. Instead, in our work we use an approximate

algorithm for encoding network paths to symbolically generate compact MILP formulations

that can scale to hundreds of nodes. Moreover, with respect to [106, 108], our approach is more

general, i.e., it not only supports the formulations from [106, 108], but also other concerns

(e.g., lifetime constraints, localization constraints). Overall, our approach is superior both in

network size and the dimensionality of the design space, which now includes the sizing of

network components (e.g., choosing the transmission power of devices, selecting external

antennas and so on). We refer the reader to Section 6.4 for a more detailed comparison of our

approach with other related techniques in the wireless network domain.

Other classes of optimization methods include nonlinear convex and non-convex program-

ming. The former is a mature technology with efficient polynomial-time solution strategies,

such as interior-point methods. State-of-the-art optimization tools, e.g., CPLEX, Gurobi,

MOSEK or SeDuMi [4], can handle convex programs with thousands of constraints and hun-

dreds of variables, in few tens of seconds on a desktop computer. The latter, non-convex

problems are among the hardest ones in optimization, while a standard widely-adopted

method for solving them is still missing. Several approaches, including local and global opti-

mization methods, exist, as well as the tools, such as IPOPT [55] (open-source) and NPSOL [94]

(proprietary). While these nonlinear optimization techniques (especially, convex) are widely

applied in other CPS design problems, such as control, very few works (one example is [40])

leverage them for solving high-level architecture exploration problems.
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A platform-based framework for the design of interconnection networks, COSI [104], has

been proposed for synthesizing high-level network-on-chip architectures. COSI leverages

component-based model for representing system architectures and several quantity models

for capturing various performance aspects. It allows designers to plug in domain-specific

heuristic algorithms for solving mapping problems. A case study of synthesizing networked

control systems in building automation using COSI has been presented in [105].

Recently, many efforts have been made in applying the SMT-based techniques to solving

optimization problems [116, 28, 93, 117, 74]. For example, Cimatti et al. [28] presented

a Satisfiability Modulo Cost approach by augmenting an SMT solver with pseudo-boolean

constraints representing cost functions. The key idea is to iteratively use the SMT procedure

and tighten the admissibility range of one or multiple objectives. Two algorithms have been

proposed for running the optimization, one based on branch-and-bound and one based on

binary search. The technique reflects the general principle of Optimization Modulo Theories

(OMT), i.e., solving SMT problems and updating the cost-related terms of the SMT formula

until no better solution is found. The main difference from aforementioned ILP Modulo

Theories techniques is, therefore, that in OMT the optimization is performed externally from

the solver being used. The latter only checks the feasibility of every new solution. In contrast,

in IMT optimization is performed inside a MILP solver, while the theory solver is responsible

for counterexample generation and learning. Finally, the branch-and-cut algorithm used in

most of existing MILP solvers estimates the best achievable cost at every step (considering

the linear relaxation of the solution). This lower bound can be compared to the best integral

solution found so far in order to estimate a gap between the two, which can be used, for

example, as a termination criteria for the solver (e.g., when a solution is found, which is only

10% worse than the bound). In OMT, it is not possible to estimate such optimization gap.

Several optimizing SMT solvers have been proposed, for example, MathSAT [22] (implement-

ing the approach from [28]), OptiMathSAT [117], SYMBA [74] and νZ [18]. They compete in

supporting different theories (e.g., linear arithmetic over rationals or integers) and objective

functions, conflict-driven learning techniques and performance. None of them currently

supports nonlinear cost functions. While the exhaustive comparison of these existing tools

is out of scope of this work, we note that none of them has been applied to cyber-physical

system design problems so far. OMT techniques are still in their infancy, but we expect their

future applications to architecture exploration problems and consider them an interesting

direction of future work in the area of CPS design.

1.5 Outline of the Dissertation

This dissertation consists of seven chapters which are briefly summarized as follows. In the

current chapter we discussed the motivation, the objectives and the contributions of our work

and highlighted the phases of cyber-physical system design flows, where our methodology is

positioned. We also discussed existing state-of-the-art approaches to high-level architecture

exploration of CPS, while more related works for particular case studies are also mentioned in
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Chapters 5 and 6 of the dissertation.

In Chapter 2 we introduce the formal theoretical background of our methodology and the main

definitions that we use throughout the thesis. We describe the graph-based representation of

CPS architectures, which is employed in this work, and define the generic basis of architecture

exploration problems in terms of variables and mixed integer linear constraints used in the

proposed formulation. We further demonstrate and exemplify, how the basis can be used to

instantiate system requirements.

Chapter 3 presents the exploration methodology, in which the final architecture is a meet-in-

the-middle of the two search spaces, i.e., application space (architecture requirements) and

implementation space (library of components) and two respective problems, i.e., topology

selection and mapping. We discuss the flow of the methodology, outlining the main steps:

specification, encoding, solving and analysis. We then provide the formulations of a variety of

CPS requirements that are currently captured in our formulation (e.g., timing, reliability, work-

load, routing). We further elaborate on the mapping problem and on the solving and analysis

techniques. Finally, the chapter is concluded with the algorithmic part of the methodology,

including algorithms for approximate encoding of path constraints and iterative optimization

techniques.

In Chapter 4 we introduce ARCHEX 2.0, an extensible framework for CPS architecture explo-

ration that we developed in support of the proposed methodology. We pay much attention to

the pattern-based language, which plays an important role in the specification, since patterns

significantly lower the burden of formulating exploration problems. We then explain the

software structure of ARCHEX and its extension for wireless network design. Finally, we give a

step-by-step example of using the framework for formulating and solving a simple problem

for a fuel management system.

In Chapter 5 we run the numerical evaluation of our approach on two reliability-driven

industrial case studies: aircraft electrical power distribution network and reconfigurable man-

ufacturing system. By solving these problems in ARCHEX, we demonstrate the efficiency and

the scalability of the methodology and show the advantage of using patterns for formulating

complex problems.

In Chapter 6 we focus on a significantly different domain, wireless networks. We then show,

how our approach can be applied to topology synthesis and component sizing of wireless

sensor networks on two case studies, data collection and localization networks. In addition,

by reporting on the results of the channel measurement campaign, we propose several im-

provements for conventional channel models that can be used in design tools including, but

not limited to, network simulators. These models are included in our library in order to map

virtual links of the architecture template to real (physical) ones.

Finally, in Chapter 7 we recap the contributions of this dissertation and summarize the

obtained results. Among the conclusions, we also also highlight several promising research

directions for future work.
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2 Preliminaries

This chapter provides a background for the concepts introduced in this thesis. We give the

main definitions related to system architecture and its graph-based representation. We then

introduce a set of variables and generic mixed integer linear constraints that we call the “basis”

of the exploration problem. This basis is a common semantic domain, in which it is possible to

define a variety of requirements for different classes of cyber-physical systems. We further briefly

review a set of techniques for expressing complex constraints in a linear form. Finally, we cast

the architecture exploration problem as an optimized mapping problem on a reconfigurable

graph, where “virtual” components of the architecture are mapped into “real” components from

pre-defined libraries to minimize a cost function under correctness guarantees.

2.1 Terminology

2.1.1 Architecture, Template, Topology Configuration

We assume that a CPS architecture is represented by a network of interconnected components,

which are selected from a library (collection) L and comply with a set of composition rules.

Each component in L has a set of attributes capturing its functional and extra-functional

properties. Extra-functional properties include, for instance, energy consumption, processing

delay, and cost. Each component has a set of terminals parameterized with terminal variables.

Input and output terminals are used to send and receive signals or the values of terminal

variables. Composition rules define which connections are allowed and how terminal variables

may be assigned. Components can have different types, i.e., different roles or functions in the

system.We focus on networks whose components exchange entities or quantities via flows

(e.g., message flow, power flow, product flow). Therefore, certain components have the role of

sources or sinks.

Definition 2.1 (Architecture). A system architecture is a directed graph G = (V ,E), where V is

a set of components (nodes) while an edge ei j ∈ E represents an interconnection from vi to v j ,

also written as evi v j , with i , j ∈ {1, . . . , |V |}, |V | being the cardinality of V .

Graph G can be represented by its adjacency matrix, and in the following we use E to denote

this matrix unless specially noted that E is a set. Edges ei j ∈ E are interpreted as binary

variables that evaluate to one (zero) to indicate the presence (absence) of interconnections
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between nodes. We say that an edge between vi and v j is instantiated (or used) if ei j = 1.

When at least one incoming edge variable ei j or outgoing edge variable e j i for a component

vi evaluates to one, we say that vi is connected. Trivially, connected nodes are instantiated, i.e.,

used in the final architecture, while the opposite may not hold. Instantiated components are

those components that perform a certain function within the system, which is a more general

definition with respect to being connected. This definition is futher explained later in this

section.

A set of all possible architectures for a given system forms an architectural space, which design-

ers explore to find a feasible (or optimal, sub-optimal) instance that meets the specification.

To formalize the exploration problem, we resort to the definitions of template and topology

configuration specified as follows:

Definition 2.2 (Template). A template T is a reconfigurable architecture, i.e., a graph with a

fixed set of nodes V but variable set of edges E, which can be altered by the use of the variables

ei j . The size of the template is determined by the number of nodes in the graph, i.e., |T| = |V |.

Definition 2.3 (Topology configuration). A topology configuration E∗ is an assignment over

the variables in E, marking the subset of edges from T that are instantiated. It can be seen as an

instance of T.

Due to its reconfigurability, T is one of the inputs of the exploration problem. It has the

maximal number of nodes and all possible edges, i.e., those that are not restricted by the

composition rules (a restriction is enforced, for example, if components of certain types

cannot be directly connected). In turn, a topology configuration is a design decision, i.e., it

defines which components are used in the final architecture and how they are connected. The

number of nodes and edges in the topology configuration can be smaller than in the template.

Some of them may not be necessary for the system to function correctly, i.e., unused, and,

therefore, are pruned away to minimize some objective function.

Example 1 (Topology Selection). We assume a sample architecture that consists of 5 distinct

component types: A,B,C,D and E. Template T of the architecture is shown on Figure 2.1a,

where components of different types have different colors. T includes all possible connections,

while the graph is not complete, because some edges are restricted by composition rules (e.g.,

direct connections between B and D are not permitted). The total number of nodes in T is 15.

Figure 2.1b represents an assignment over E, i.e., a configuration E∗ of the system topology

selected from the architectural space. Only 12 nodes are used (all but B3, C2 and D2), and all

connections that are not essential for system function are removed.

2.1.2 Mapping

Every component and connection of a system at a given level of abstraction can be imple-

mented in different ways (e.g., by different electrical or mechanical devices, program codes).
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(a) Architecture template T (b) Selected topology configuration E∗

Figure 2.1 – Topology selection example: (a) Template T with all possible connections between
components (note that some edges are missing, because they are restricted by the composition
rules), and its adjacency matrix containing binary decision variables ei j ; (b) A topology
configuration E∗, i.e., a final system topology selected from T, as an assignment over the
decision variables ei j .

These implementations, as well as the resulting system, can have different characteristics and

performance. The choice of the implementations, or the mapping, is defined below.

Definition 2.4 (Mapping). A mapping M : V → L is a function that associates each graph

node v ∈V (also called “virtual”component) with some component l ∈L in the library (“real”

component or device). We represent the mapping by assigning to each pair (li , v j ), with li ∈L
and v j ∈V , a binary variable mi j ∈ M, M being the mapping matrix, such that mi j is one if v j

is mapped to li and zero otherwise.

Clearly, if a component v j is not associated to any element from L, then it is not used in

the final architecture, and vice versa. We can now define instantiated components as the

ones which are mapped to at least one component in the library L, i.e.,
∑|L|

i=1 mi j ≥ 1. In the

following, we also use auxiliary Boolean variables δ j to define some system requirements: δ j

is one if component v j is instantiated (the aforementioned sum of mapping variables for v j is

greater than zero), and zero otherwise.

In general, map M can also be extended for graph edges e ∈ E , while in our formulation

edges are directly mapped to a pre-defined set of connection elements in the library, e.g.,
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Figure 2.2 – Mapping of “virtual” components from template T of the architecture to “real”
devices from a library L.

switches, wires, or wireless links. That is, their mapping is fixed, so if an edge is used in the

final architecture then its corresponding library element is already known. Both nodes and

edges in the graph are labeled with types, terminal variables, and attributes corresponding

to those from the library L, and their values are determined through the mapping as further

demonstrated in Section 2.3.1 of this chapter.

Example 2 (Mapping). Associating “virtual” components of template T to “real” components

from libraryL (|T| = n, |L| = m) is done using the mapping matrix Mm×n as shown on Figure 2.2.

For example, component C2 from T is mapped to a radio transceiver, while D3 is associated to a

processor. Corresponding values mi j ∈ M evaluate to one. We can then say that C2 and D3 are

instantiated in the architecture.

2.1.3 Paths, Routing, Functional Flow

Definition 2.5 (Path). A network path (route) π(v0 → vn) is a sequence of distinct nodes

{v0, . . . , vn} such that evi vi+1 ∈ E for each i . We write |π| to denote the length of π. For a pair of

nodes q = (vs , vd ), where vs and vd are, respectively, source and destination nodes, we define

πq :=π(vs → vd ).

For computing network paths, edges ei j ∈ E can be labeled with binary variables yπi j , which

evaluate to one if ei j connects the nodes (vi , v j ) in π and zero otherwise. Therefore, every

path π has an associated vector yπ with |yπ| = |E |. In turn, nodes v ∈V can be labeled with

binary variables wπ: wπ
i is one if node vi belongs to path π and zero otherwise. We call yπ
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A1 A2

B1 B2 B3 B4

C1 C2 C3

D1 D2 D3

E1 E2 E3

Path !q (A2→E2) = (A2,B2,C3,D3,E2) 

"#
$%= 0

node &i (B4) is not in !q

"#
$%= 1

node &i (C3) belongs to !q

'#($
%

= 1
edge eij (C3, D3) connects nodes in !q

'#($
%

= 0 but eij = 1
edge eij (D3, E3) is used, but it does not 
connect nodes in !q

Figure 2.3 – Example of a network path πq , q = (A2,E2), and corresponding path variables
wπq

and yπ
q

for nodes and edges of the graph.

and wπ path variables and associate them to each other and to variables ei j of the topology

configuration using a set of generic constraints introduced in Section 2.2.2 of current chapter.

Example 3 (Path variables). Figure 2.3 illustrates a path πq = (A2,B2,C 3,D3,E2), where q =
(A2,E2). For the nodes visited along the path (e.g., C3), path variable wπq

i = 1, i being the

numerical index of the node v ∈V , while remaining nodes (e.g., B4) have wπq

i = 0. Similarly,

edges that connect nodes in πq , for instance, (C 3,D3), have yπ
q

i j = 1, while path variables for

other edges evaluate to zero. In particular, it is possible that an edge is instantiated, i.e., edge

variable ei j = 1, while this edge, e.g., (D3,E3), does not belong to πq , so that yπ
q

i j = 0.

We note that path variables are created only for those pairs of nodes which must be connected

by a path as required by the user (it is possible to define several paths between the same pair in

case if more than one replica is required, e.g., for reliability), because of the exponential growth

of problem complexity for enumerating all possible paths. At the same time, all possible edges

from T are associated with variables yπi j for every required path π, i.e., any edge from T can

be used in any π. In other words, all possible paths are symbolically encoded in each π, and

the corresponding complexity is also exponential. We discuss the techniques of drastically

lowering this complexity and achieving more compact encodings in Section 3.5.1.

All required paths for a pair q are stored in a set Πq . Depending on routing requirements,

|Πq | = 0 if no paths are required for q and |Πq | > 0 if one or more routes are needed. We group

the vectors yπ
q

and wπq
into a set R = {yπ

q
, wπq |q ∈Q,πq ∈Πq }, Q being the subset of pairs of
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nodes in V for which a path is required.

Definition 2.6 (Routing). A routing R∗ is an assignment over the set R of variables yπ
q

and

wπq
, marking the subsets of edges and nodes 1 from T that are used in system paths (routes).

R∗ can be informally seen as a joint routing table for all components of the system, as well as its

logical topology. It defines the choice of network routes between pairs of source (sending) and

destination (receiving) nodes of a network, which is one of the design decisions for high-level

architectures being considered in this work.

We call P a partition over V , such that all components belonging to the same subset in P have

the same type. We also write tv to denote the type of component (node) v . Components vi

and v j of the same type t can also have different subtypes svi and sv j . Connections and paths

between components with different subtypes can be allowed or restricted based on library

composition rules or user-specified interconnection constraints. We call two components

compatible if their subtypes allow them to be connected by a path. We call path π a valid path

if it guarantees that the signal from the source of π can be accepted by its sink. Therefore,

if source and sink are not compatible, π must include some intermediate components (e.g.,

converters, modulators, filters) that alter the signal so that it becomes acceptable by the sink.

Example 4 (Valid Paths). We assume an electrical power distribution network (EPN), where

power is delivered from generators to loads via a set of intermediate components (e.g., buses).

Compatible components of an EPN must have same voltage levels represented by subtypes: high

voltage (HV) and low voltage (LV). Paths between HV (LV) generators and HV (LV) loads are

valid. For a path connecting an LV generator to a HV load to be valid, a step-up transformer

must be added in between.

Let S1 and Sn in the partition P include, respectively, all the sources and the sinks of the

network. Then, a functional link Fi is the set of all valid paths from any source in S1 to a sink

vi ∈ Sn . Such links are essential for a system to operate correctly. For instance, in a power

distribution network from the example above, they represent the paths between electrical

loads and power sources.

Definition 2.7 (Functional Flow). A functional flow F is an ordered sequence of component

types (t1, . . . , tn) that are needed to implement a functional link between a source and a sink.

We also write vi ¹F v j if tvi precedes tv j in F, and vi ∼F v j if vi and v j have the same type.

We say that a path π complies with F, written π |=F, if the ordering of component types in π

does not violate the ordering in F, i.e., (vi ∼ vi+1)∨(vi ¹ vi+1) ∀i ∈N : 1 ≤ i ≤ |π|−1. Multiple

1Using wπq
alone is not enough to compute a pathπq (and R∗ in general), since it does not give any information

about the ordering of nodes in πq . At the same time, variables yπ
q

explicitly compute the edges of πq , and the
nodes can also be determined using this information. Therefore, node variables wπq

can be seen as auxiliary
and, in general, redundant for defining R. However, as we show later in this thesis, they are extensively used for
encoding application requirements, such as timing or power consumption. Therefore, it is useful to define them
once in R, otherwise, the overall complexity of the encoding will increase.
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A1 A2

B1 B2 B3 B4

C1 C2 C3

D1 D2 D3

E1 E2 E3

A1 has one path to E2 A2 has two paths to E2

Functional link FE2 includes 3 paths:

A1 A2

B1 B2 B3 B4

C1 C2 C3

D1 D2 D3

E1 E2 E3

!1 (A1→E1)⊨# (A,B,C,D,E) !2 (A2→E3) ⊭# (A,B,C,D,E)
(edge D3→C2) 

(a) Functional link FE2 (b) Functional flow F= (A,B,C,D,E)

Figure 2.4 – (a) Example of a functional link FE2, i.e., a set of valid paths from sources (A1 and
A2) to sink E2; (b) Example of a functional flow F = (A,B,C,D,E) and two paths: π1 complies
with F and π2 violates F because of a “backward” connection from succeeding node D3 to
preceding node C2.

functional flows {F1, . . . ,Fn} can be defined, each representing an ordering of components for

implementing a certain functionality within the same system. For instance, assuming that EPN

generators from Example 4 provide AC power, AC and DC loads can have different sequences

of intermediate components in their functional links (e.g., DC loads need rectifiers, while

AC loads do not). In a manufacturing system different types of products can be processed

differently (with different machinery etc). Every path π belonging to some functional link F of

the system must comply with one of the functional flows.

Example 5 (Functional Link). A functional link FE2 connecting the sources A1 and A2 to the

sink E2 is demonstrated on Figure 2.4a (covered by a yellow trace). It consists of three paths:

(A1,B1,B2,C 3,D3,E2), (A2,B2,C 3,D3,E2) and (A2,B4,C 3,D3,E2).

Example 6 (Functional Flow). The functional flow F of the system is a sequence (A,B,C,D,E).

On Figure 2.4b, pathπ1 = (A1,B1,B2,C 1,D1,E1) complies withF, while pathπ2 = (A2,B4,C 3,D3,C 2,D2,E3)

violates it, because for the edge (D3,C 2) neither D3 ∼C 2 nor D3 ¹C 2 holds.

Informally, with the definitions above, the architecture exploration methodology deals with

the selection of the system topology, including components interconnection and routing,

and with sizing of each component, i.e., mapping it to a particular implementation from a

domain-specific library. The resulting architecture must be feasible with respect to a set of

constraints (rules). Some of the constraints come with the structure of the given formulation
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and ensure that it is consistent, while others are application requirements. In other words, all

design problems based on the presented formulation, must satisfy the former, while the latter

are specific to a particular domain and design. This allows us to define a common subset of

variables and constraints as a fundament of the exploration problem. In the following sections,

we discuss this subset and the way it is used for defining higher-level application requirements.

In this work, we focus on the optimized exploration and selection of CPS architectures, and,

therefore, the chapter is finalized with the problem statement as an optimization problem.

2.2 Basis of the Exploration Problem

In our formulation, requirements on the architecture are defined using the variables that

represent the topology configuration (ei j ), the mapping (mi j ) and the paths (yπi j and wπ
i ).

Together, they form the basis B of the exploration problem, i.e., a common semantic domain,

in which we formalize an exploration problem for any type of system within our methodology.

We group the basis variables into a set B = E ∪M ∪R. A set of constraints RB that associates

these variables to each other and ensures the overall consistency is also included in the basis.

Below, we provide their mixed integer linear formulations.

2.2.1 Mapping Constraints

We denote as M k the mapping matrix for type k, where entries mk
i j = 1 iff a virtual component

(graph node) v j ∈ Pk is implemented by component l k
i ∈Lk . Lk and Pk are the subsets of L

and V including all the elements of type k in L and V . We also recall that E is the adjacency

matrix of T, i.e., its entries ei j = 1 if there is a connection from node vi to node v j , and 0

otherwise. Then, the mapping constraints for type k assume the following form:

|Lk |∨
i=1

mk
i j ≥ (=)

|V |∨
i=1

(ei j ∨e j i ) ∀ j ∈N : 1 ≤ j ≤ |Pk |, (2.1a)

|Lk |∑
i=1

mk
i j ≤ 1 ∀ j ∈N : 1 ≤ j ≤ |Pk |. (2.1b)

Constraints (2.1a) state that each component of type k that is instantiated must be mapped

to one of the components in Lk . They can take one of the two forms: “soft” or “strict”. While

the former (with inequality) also allows the unconnected components to be associated with

elements from L, the latter (with equality) is a tighter version and allows only connected

components to be mapped. In general, the strict constraint has to be used; soft mapping

constraint is a form of relaxation that can be applied for systems, where the goal of the

exploration problem is only to select the nodes. Example 7 illustrates both cases. An example

of a design that uses soft mapping (a localization network) is introduced in Chapter 6. Note that

disjunction (Boolean OR) operators in (2.1a) are nonlinear, since the result of the operation

has to be binary, i.e., they cannot be replaced with summation. A standard linearization

technique is applied to obtain linearity (see Section 2.4.1).
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Constraints (2.1b) ensure that the mapping is nonambiguous, i.e., that virtual components are

never mapped to more than one library component. Similar constraints are enforced for all

the types in T. Some components (e.g., of a certain type) can have fixed mapping, i.e., known

a-priori. This can be done by explicitly setting the corresponding values from M k to 1 using

equality constraints or replacing them with numeric values (ones).

Example 7 (Mapping Constraints). Figure 2.5 illustrates a topology configuration based on a

template T with n “virtual” components, which are mapped to a library L of m elements, as

described by an assignment over the mapping matrix M. Several graph nodes (A2,B3,B4,C2 and

D3) and corresponding columns of M demonstrate different mapping scenarios. Component

A2 is mapped to a single element l2 ∈ L, while B4 is associated to both l1 and l3. The latter

is an invalid mapping, and such cases are forbidden by Constraint (2.1b). Node B3 is not

instantiated, i.e., does not have any mapping (and is not connected). C2 is mapped to l1 even

though it is not connected, which is an example of using a “soft” variation of Constraint (2.1a).

Finally, D3 is connected, i.e., used in the architecture, but does not have a corresponding library

element, which is also a violation that is prevented by (2.1a).

Overall, the encoding approach in this thesis facilitates the exploration of different imple-

mentation alternatives. A change in L only affects the mapping constraints, which makes the

presented formulation more general than the one in [99, 12], as the mapping constraints are

not hard-coded as a part of the interconnection constraints. Moreover, this approach is more

efficient. Let ` be the number of library options available to implement each component and

n be the number of nodes in the template T. In previous formulations [99, 12], for solving

an equivalent mapping problem, i.e., for selecting one of ` implementations for a node vi ,

the latter has to be represented by ` nodes each representing a particular mapping decision.

Therefore, the actual size of the adjacency matris E of decision variables is ǹ × ǹ, which is

quadratic in `. In our approach, E is an n ×n matrix, while a mapping matrix M`×n is also

introduced, so the total number of variables amounts to n2 +n`= n(n +`), which is, instead,

linear in `. Furthermore, as shown in the following chapters, many application constraints

use edge variables ei j ∈ E , so increasing the size of E will highly affect their complexity2 , while

manipulating the size of M has a much smaller impact. Experimental results in Section 5.1.5

confirm the efficiency of the proposed mapping approach.

2.2.2 Path Constraints

As discussed above, every path π within the network of components is encoded using two

sets of variables, yπ and wπ, representing, respectively, edges and nodes used in π. To en-

sure a valid assignment over these variables, which does not contradict with the topology

configuration (variables ei j ∈ E), a set of generic path constraints is added to the formulation

for every declared path π. In our approach, variables yπ play the primary role, because they

are sufficient to determine both the nodes of π and their ordering. Given the source and

2Moreover, increasing the template size leads to a similar increase in the number of path variables yπi j and wπ
i ,

so potential redundancy in T may be very harmful.
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mapped – error. This is 
forbidden by (2.1a)

Figure 2.5 – Examples of correct and invalid mapping scenarios.

destination (sink) nodes vs and vd , s and d being the indices of the adjacency matrix E , we

define following constraint for the path π(vs → vd ):

C (yπ)T = zπ, (2.2)

which is a balance equation that ensures that vs and vd are connected by a path, i.e., edges

from yπ together form a direct walk from the source to the sink.3 Here, C is the incidence

matrix of the template T and zπ is a column vector of length |V |, with zπ(s) = 1, zπ(d) = −1,

and the remaining values of zπ are zero (see illustration from Example 8). To compute C all

possible edges in T are considered. Entries ci j ∈C are numeric: ci j = 1(−1) if edge j is leaving

(entering) node i , and zero otherwise. C can be precomputed offline for a given template

T based on its structure and composition rules of T and library L. In such a way, restricted

connections are not added to C and, therefore, constraint (2.2) ensures that generated paths

are valid paths.

Next, we define the relations between the variables ei j ∈ E of the topology configuration, and

path variables yπi j and wπ
i using the following expressions:

yπi j ≤ ei j ∀i , j ∈N : 1 ≤ i , j ≤ |V |, (2.3a)

wπ
i =

|V |∨
j=1

(yπi j ∨ yπj i ) ∀i ∈N : 1 ≤ i ≤ |V |. (2.3b)

Constraint (2.3a) says that yπi j is true only if nodes i and j share an edge. Constraint (2.3b)

relates variables wπ to yπ: node i belongs to path π if at least one of its incoming or outgoing

3Note that in Constraint (2.2) yπ is a vector of path variables, i.e., their flattened representation, and every entry
yπk of the vector corresponds to a variable yπi j for some source vi and some sink v j
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edges connects the nodes in π. Generally, both nodes and edges of π can be determined by

computing only yπ, as defined by Constraint (2.2), while node variables wπ can be seen as

auxiliary. However, many application requirements, such as timing, use the information about

the components used in network paths, so node variables are extensively used. Therefore, it is

useful to define them in the basis.

Finally, in the design methodology presented in this thesis we focus only on simple paths, i.e.,

paths that do not contain repeated vertices and loops. Assignments over yπ generated using

only the Constraint (2.2) may represent paths that contain loops (see Example 9). Therefore,

we add an additional set of path constraints that forbid the loops in every path π:

ei i = 0 ∀i ∈N : 1 ≤ i ≤ |V |, (2.4a)

|V |∑
j=1

yπi j ≤ 1,
|V |∑
j=1

yπj i ≤ 1 ∀i ∈N : 1 ≤ i ≤ |V |. (2.4b)

Constraint (2.4a) imposes that no node in V is connected to itself (this applies to the whole

topology configuration, hence, variables from E are used), while two constraints from (2.4b)

require that every node inπ has at most one predecessor and at most one successor. In general,

a path that has a subtour of two or more nodes that are connected between each other and not

connected to other nodes of π is still valid in the scope of given constraints, i.e., certain kinds

of loops cannot be restricted with the given formulation. However, in practice such cases are

resolved by the virtue of satisfying the application constraints and minimizing number of

nodes and edges used in the graph, which is typical for the cost function. There are alternative

ILP formulations of simple paths, such as the one in [102], which tackle the issue above, but

they lead to a significant increase of the problem complexity.

Example 8 (Balance Equation). Using the balance equation (2.2) to generate a pathπ(A2 → E3)

is demonstrated on Figure 2.6a. Column vector zπ has only two non-zero values, 1 and -1,

corresponding to, respectively, source A2 and sink E3 of π. A satisfying assignment over yπ

instantiates following edges for π: (A2,B4), (B4,C3), (C3,D3) and (D3,E3), which allows to

determine both the nodes and the order, in which they appear in π.

Example 9 (Loop Avoidance). Figure 2.6b illustrates two paths, π1(A1 → E1) and π2(A2 → E3)

that satisfy the Constraint (2.2), but have loops. In particular, π1 has a bidirectional connection

between nodes D1 and D2, which results in a loop D1 → D2 → D1. Note that D1 in this

case has two incoming and two outgoing edges in yπ. Such paths can be restricted by using

Constraint (2.4b). In turn, path π2 has a self loop at D3, i.e., an edge, connecting D3 to itself.

Using Constraint (2.4a) allows the self-loops to be avoided in all paths and in the overall

topology configuration.

We note that the presented path constraints enumerate all possible paths between a source-

destination pair, which has exponential complexity. This is further exacerbated when the

enumeration has to be done for all possible pairs, because listing them has exponential

complexity as well. To cope with the latter issue, the paths in our formulation are declared on
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(a) Loopless path π (b) Paths π1 and π2 with loops

Figure 2.6 – Path constraints: (a) Using balance equation C (yπ)T = zπ for generating paths; (b)
Examples of paths with loops satisfying the balance equation.

the need basis, i.e., only between components that must be connected due to some application

requirements (e.g., routing). We also address the former problem by proposing an approximate

encoding of network paths as discussed in Chapter 3.5.1.

2.3 Using the Basis

We have presented the basis of the exploration problem as a set B of decision variables, and

a set RB of integer linear constraints. An assignment over B that satisfies RB provides the

necessary and, in some cases, sufficient information about the system architecture selected

from the design space: how the components are used, how they are connected (direct links

and paths), and how they are implemented. In this section we demonstrate how to use the

variables from B as building blocks for defining the properties and requirements of cyber-

physical systems.

2.3.1 Associating Template and Library Attributes

Both nodes and edges of the architecture templateT can be labeled with attributes correspond-

ing to those from the library L, for example, latency, failure probability or power capacity.

Mapping constraints from RB , discussed in Section 2.2.1, enforce that every node v j ∈ T is

mapped to at most one element li ∈L. However, the actual mapping will be selected as a
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result of the optimization process, and, therefore, it is not known a-priori. At the same time,

most of architecture requirements (apart from RB ) are defined over the attributes of T and

naturally depend on the mapping. Hence, these attributes have to be expressed in a form

that takes all possible mappings into account. This can be done by leveraging the mapping

variables mi j ∈ M from the basis. Let the nodes v ∈V of T be labeled with an attribute A (e.g.,

delay) and let AT
j be the value of this attribute for node v j . Then we can write:

AT
j =

|L|∑
i=1

mi j AL
i ∀ j ∈N : 1 ≤ j ≤ |V |, (2.5)

where AL
i is the vector of values of the attribute A for the components in L. In the sum (2.5),

at most one of the Boolean variables mi j will evaluate to true, thus making the value of AT
j

equal to a corresponding value from AL and forcing all other terms to zero. If the component

is not instantiated, i.e., does not have a mapping, then the value of AT
j will be zero. The same

can be applied to graph edges.

Overall, when an attribute of a node (or an edge) is used for formulating a constraint or a cost

function, it can be substituted with Expression (2.5). Alternatively, every new label can be

defined as a decision variable, and then (2.5) can be used as a constraint that associates its

value to L. More generally, each attribute in T can be a linear combination of other existing

attributes, each of them being associated to a corresponding element (and value) from the

library using the basis variables mi j as shown above.

2.3.2 Formalizing Application Requirements on Top of the Basis

In general, a requirement on the architecture can be expressed as a bound on a certain property

(e.g, end-to-end delay, failure probability of a link, power provided by a set of generators etc).

In turn, many system properties can be defined as functions f (.) over a set of attributes that are

assigned to components and connections of the architecture (graph nodes and edges in our

formulation). Properties can be system-wide or related to a particular scope, such as a path or

a subsystem. Of course, components that are not used in the system or within the selected

scope must not be taken into account when calculating a property. This can be determined

using the basis variables. Also, as discussed in Section 2.3.1, variables mi j from B are used to

associate the attributes AT of the template to those from the library (AL). Overall, variables

{ei j ,mi j , yπi j , wπ
i } ∈ B define both the mapping of “virtual” components to implementations,

i.e., the values of AT , and their presence or absence in the architecture (or its part). A generic

design constraint, therefore, can be expressed in the following form:

f
(
AT ,β, xA , xD , xC

) ≥ (≤,=) Y ∗, (2.6)

where AT includes a set of attributes {AT
1 , . . . , AT

n} of the template T that are used to compute

the property f (.), β ∈ B are the basis variables that define the scope of the property, xA ∈ X A are

auxiliary variables, e.g., added to the formulation for linearizing complex constraints (further
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explained in Section 2.4), xD ∈ XD and xC ∈ XC are, respectively, discrete and continuous

parameters that are problem-specific, and the right-hand side Y ∗ is the numeric bound

(lower, upper or exact). XC and XD include decision variables, which are either system-

level parameters or template attributes that do not have corresponding ones in the library.

For example, xC can be a duty cycle of a wireless communication protocol (i.e., a system

parameter) or a flow of some continuous-valued quantity (e.g., product flow, air flow) between

a pair of components. Similarly, xD can represent some discrete (binary, integer) choice, such

as a number of message retransmissions, a scheduling policy and others.

Example 10 (Flow Balance Constraint). Assume Figure 2.7a represents the architecture of a fuel

distribution system, where components C1 and C3 are mixers that distribute the input flows to

output flows (both inputs and outputs can be multiple). Balance constraints for C1 and C3 state

that their fan-in must be equal to fan-out, i.e., no fuel is stored in the components over time.

Edges of the graph on Figure 2.7a are labeled with domain-specific attributes λi j (fuel flows),

which are real decision variables, so that a static fuel flow distribution is obtained as a part of

the solution. To consider only those edges that are used in the topology configuration, flow rates

λi j are multiplied by corresponding variables ei j ∈ E. We can express the balance constraint

as f (λ,e, xA) = ∑|V |
i=1λi j ei j −∑|V |

k=1λ j k e j k = 0, where Y ∗ = 0, j = {i d x(C 1), i d x(C 3)} (indices

of nodes C1 and C3 in E), AT = xC =λ, β= e (only topology configuration variables from the

basis are used), and xA ∈ X A are auxiliary variables added to the formulation for linearizing the

products λi j ei j of real and binary variables.

Example 11 (Timing Constraint). In a communication network, end-to-end delay τ of a path

π(A1 → E1) for delivering a message from A1 to E1 must not exceed the threshold τ∗. To correctly

calculate τ as a sum of delays τi of components along the path, other components (not in π)

must not be considered. This is done by multiplying each τi , which are attributes of nodes

vi ∈ V of the template T, by corresponding basis variables wπ
i and summing them together,

so that only the delays of components from π are considered (rest are zeros). Therefore, by

using the variables wπ
i from the basis the property (timing) is calculated within a particular

scope (path π). Note that products wπ
i τi are nonlinear, hence, linearization is applied, and

auxiliary variables xA ∈ X A are added to the formulation. The constraint can be written as

f
(
τ, wπ,m, xA

)=∑|V |
i=1τi wπ

i ≤ τ∗, where AT = τ, β= {wπ,m} (mapping variables m ∈ M are

used to compute the values of τi of the template), and domain-specific parameters xC and xD

are not used. This is further explained on the Figure 2.7b, as well as in Section 3.2.5.

Overall, the presented generic basis allows us to express a variety design of requirements

for different classes of CPS. As further shown in Chapter 3, all definitions of the application

constraints make use of the variables from B . For some of them, auxiliary and domain-specific

variables (xA , xC , xD ) are used, which also complies with the generic constraint expression (2.6).

Finally, all application constraints and auxiliary constraints (e.g., those used for linearization)

form the set RA , i.e., a set of constraints for a specific architecture exploration problem.
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Figure 2.7 – Examples of defining application constraints RA using variables from the basis
of the exploration problem: (a) Flow balance constraint for mixer components in a fuel
distribution system; (b) End-to-end delay (timing) constraint for a communication network.

2.3.3 Objective Functions

Every node and every edge in T is associated with a cost value. This may represent the

monetary cost as well as other cost parameters, such as idle time, energy, weight. We then

consider cost functions that can be expressed as the sum of the costs of all the instantiated

components (nodes) and connections (edges):

|V |∑
i=1

δi ci +
|V |∑
i=1

|V |∑
j=1

ei j c̃i j , (2.7)

where ci is the cost of component vi , c̃i j is the cost of the edge ei j , and δi is a binary variable

equal to one if the component is instantiated and zero otherwise.

To compute certain costs, such as energy consumption, the information about an edge ei j

being present in the topology configuration is not sufficient, because it is important to know

how many paths (routes) in the system use this edge (link). Same applies to the components.

Therefore, another cost function that we consider is using the path variables yπ and wπ from

the basis:

∑
π

( |V |∑
i=1

wπ
i ci +

|V |∑
i=1

|V |∑
j=1

yπi j c̃i j

)
(2.8)

Typically, either (2.7) or (2.8) is used to formulate the overall objective. Depending on the

specific problem, some of the terms in these expressions may be omitted or assigned weights

(for example, total costs of nodes and edges may have different impact). Also, in general, a

combination of (2.7) and (2.8) can be used. For example, if the cost of nodes is constant and
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depends only on their presence or absence in the topology, while every edge can contribute

several times depending on how it is used, then the final cost is composed from the first part

of (2.7) and second part of (2.8).

Finally, we note that the cost functions presented above are expressed using the basis variables,

but, as discussed in Section 2.5, the underlying expressions for node and edge costs ci and c̃i j

may also depend on some non-basis variables that are specific to the exploration problem.

2.4 Linearization

Our methodology leverages mixed integer linear programming to solve architecture explo-

ration problems. Therefore, all constraints and cost functions in the formulation must be

linear. That is, functions f (.) that compute system properties must consist of linear operations

over their arguments, which are decision variables. If a property cannot be expressed in linear

form per se, then some linearization method has to be applied. In general, such methods

replace the original nonlinear expression with a set of auxiliary variables and MILP constraints

that associate these variables to results of original nonlinear operations. The variables are

added to the set X A mentioned above.

We note that the techniques presented in this section do not cover all possible cases, in which

the linearization may be required. However, situations, in which these techniques can be

applied, frequently occur in definitions of application requirements within the methodology

presented in this thesis. Hereafter, if one of them (e.g., product of variables) appears in the

constraint formulation, we refer to this section instead of listing the linearization variables

and constraints for every nonlinear expression.

2.4.1 Standard Techniques

Linear operations with decision variables only include summation and multiplication by a

constant. That is, a significant part of operations used to express optimization constraints

(even simple ones) is in fact nonlinear. Such operations are also extensively used in our

methodology for expressing a variety of application requirements and include, for instance,

products of decision variables, logical operations (AND, OR, NOT, XOR etc), absolute values

and so on. Most of these can be linearized using a set of well-known techniques [126]. Below

we summarize the ones that are frequently used throughout the thesis:

• Logical AND (product of Boolean variables x1 and x2, conjunction, lower bound, Min):

the product x1x2 is replaced with an auxiliary Boolean variable y . Following constraints

are added to associate y to the operands: y ≥ x1 + x2 − 1, y ≤ x1, y ≤ x2. This can

also be generalized for any number of operands x1 . . . xn : y ≤ xi ∀i ∈ N : 1 ≤ i ≤ n,

y ≥∑
i xi − (n −1).

• Logical OR (disjunction, upper bound, Max): x1∨x2 is replaced with a Boolean variable

y , and constraints y ≤ x1+x2, y ≥ x1, y ≥ x2 are added. Can be generalized to disjunction

of n Boolean variables x1 . . . xn : y ≥ xi ∀i ∈N : 1 ≤ i ≤ n, y ≤∑
i xi .
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• Logical NOT (negation): ¬x can be written simply as 1−x.

• Logical implication (if-then): if x1 and x2 are atomic Boolean variables, then x1 ⇒ x2

can be simply rewritten as x1 ≤ x2. Otherwise, an auxiliary Boolean variable y can be

introduced, such that y = x1 → x2 = ¬x1 ∨ x2, and linear constraints y ≤ 1− x1 + x2,

y ≥ 1−x1, y ≥ x2 are added.

• Logical XOR (exclusive OR): to express x1 ⊕ x2, one can replace the operation with y

(Boolean) and constraints y ≤ x1 +x2, y ≥ x1 −x2, y ≥ x2 −x1, y ≤ 2−x1 −x2.

• Product of real and Boolean variables: let z be a real decision variable, such that

0 ≤ z ≤U , and x be a Boolean variable. Then z · x can be replaced with a real variable y ,

such that y ≤Ux, y ≤ z, y ≥ z−(1−x)U and y ≥ 0. If the upper bound U is unknown, then

some big number can be used instead (this is also called the “big-M” approach). If the

lower bound is less than zero, than a more complex formulation is also available [126].

2.4.2 Approximate Encodings

Some complex properties (e.g., bit error rate of a wireless link, advanced delay models) cannot

be expressed as linear functions over component attributes neither by itself nor by using the

techniques above. Common examples include division by a real variable as well as power and

exponential functions. Some of them can be expressed as linear if they are used on a small

interval (locally), while for some others efficient, yet approximate, linear encodings have been

proposed (e.g., [12]). In this work, we use a simple approximation of nonlinear functions that

can be used whenever none of the aforementioned can be applied.

The main idea of the approximation is to discretize the nonlinear function to be computed.

That is, instead of computing the function in its exact formulation, it can be replaced with as set

of intervals of its arguments, each resulting in a particular value of the function. These intervals

compose a lookup table, which can then be encoded into MILP using a set of implication

(if-then) constraints. Let a system property be represented by a nonlinear function f (x) of a

real variable x on an interval L ≤ x ≤U . We can then discretize f (x) to a set of n intervals ∆i ,

such that ∆i ≤ (U−L)
n ∀i ∈N : 1 ≤ i ≤ n (the last interval ∆n may be a remainder, i.e., smaller

than the rest; we also add ∆0 = 0). Then, the approximate encoding of f (x) will assume the

following form:

(L+∆i−1(i −1)+ε≤ x ≤ L+∆i−1(i −1)+∆i ) ⇒ (y = Yi ) ∀i ∈N : 1 ≤ i ≤ n, (2.9a)

ymi n ≤ y ≤ ymax ∀y ∈ Y , (2.9b)

where Yi is the value of f (x) associated with the interval i , ymi n and ymax are the numerical

bounds for the real variable y , and ε is a small value. Every possible value of x on the specified

interval [L,U ] will activate one of the implications (2.9a) and force y to take a corresponding

value Yi from the lookup table. The intervals have to be disjoint, otherwise, since strict

inequalities cannot be used in MILP, the values of x that are equal to the beginning or the

end of some interval may activate two constraints simultaneously. Consequently, y will

be constrained to take two different values at the same time leading to infeasibility of the

formulation. We use a small value ε to make two neighboring intervals disjoint, so that
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none of the values of x can cause such inconsistency. Uncertain situation can still occur if

L+∆i−1(i −1) ≤ x ≤ ε, which does not fall under any of the implications (2.9a). In such case, y

is allowed to take any value within the bounds, specified by Constraint (2.9b). However, the

value of ε can be selected based on the domain-specific knowledge to minimize the probabiliy

of such uncertainties.

Intuitively, the degree of linear approximation of f (x) using the method above can be altered

by changing the number of intervals n and, consequently, the number of constraints. Larger

values of n lead to a more accurate representation of the function and may be necessary

especially if its behavior is not monotonic. At the same time, this also affects the problem

complexity due to additional constraints. Moreover, implications (2.9a) also require lineariza-

tion, so even more constraints will be added for every interval. Furthermore, if x represents

some attribute of a node vi or edge ei j , then, in general, the computation of f (x) has to be

performed for every node or edge from the template T, so the size of T also highly affects the

complexity introduced by our approximation.

Finally, we note that the presented encoding of the linear approximation using a lookup table

can be generalized so that x is some expression in existing decision variables, and intervals

∆i have different lengths. Moreover, instead of being numeric, values {Y1 . . .Yn} can represent

piecewise linear functions. Our approach is a simplified special case of the latter. It has

an advantage of being generic and applicable to a variety of functions and related system

properties, and a drawback of potential accuracy loss. It proposes a tradeoff, since the user can

make the approximation more accurate for a price of increased complexity of the formulation.

2.5 Problem Statement

Within the computational framework presented in this chapter, we have outlined the generic

constituents of the CPS architecture: topology configuration, mapping and routing. In addi-

tion, system architecture may include sets XC and XD of, respectively, continuous and discrete

parameters, which are problem-specific. By putting it all together, we cast the cyber-physical

system architecture exploration problem as an optimization problem as follows:

• Given a template T = (V ,E) and a library L of components

• Find an assignment B∗ over the basis variables (topology configuration E∗, a map M∗

and a routing R∗), and the values X ∗
C and X ∗

D of problem-specific parameters

• Such that all application constraints RA and basis constraints RB are satisfied.

More formally:

min
β ∈ B , xD ∈ XD , xC ∈ XC

C(β, xD , xC )

s.t. rB (β) ≤ 0 ∀rB ∈RB ,

r A(β, xD , xC ) ≤ 0 ∀r A ∈RA

(2.10)

In (2.10), cost function C is also defined both over the basis and problem-specific variables,
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using the expressions (2.7) or (2.8), where variables xc ∈ Xc and xd ∈ Xd can be involved in

calculating node costs ci and edge costs c̃i j . For instance, ifC is the battery lifetime of a wireless

sensor node, then every message that the node is sending or receiving, i.e., every incoming

and outgoing link to/from the node, contributes to draining the battery. The number of these

messages over a period of time depends on the duty cycle of the MAC protocol, which is a real

decision variable from XC specific to the problem of wireless network topology selection.

In general, C can include several independent objectives, so that the provided formulation

becomes multiobjective. The optimization-based methodology presented in this thesis, how-

ever, leverages mixed integer linear programming techniques. Typically, a single cost function

is used in MILP, while multiple objectives can still be addressed by collapsing them to a single

function as a weighted sum of different concerns. In the latter case, designers are able to

explore the tradeoffs by assigning and manipulating the weights. Finally, we note that all

r A ∈RA , rb ∈RB , and C must be linear in their arguments.

The decision variable set of the exploration problem is D = (E∪R∪M)∪(X A∪XC ∪XD ) = B∪X ,

where X includes the auxiliary and application-specific variables. The final assignment over

D , determined as a result of the optimization process, provides an optimal architecture, i.e., a

network topology, in which a subset of the nodes and edges in T is used, and the mapping of

nodes to components in L. It also includes the parameter values, specific to a given system.

For certain classes of systems, such as communication networks, routing R∗ is an inherent

part of the design (e.g., configuration of the routing protocol). An example of wireless network

design with routing requirements is provided in Chapter 6. Some other systems, such as

an electrical power system, may require that the paths between certain components exist

(e.g., for reliability purposes), while the exact structure of these paths, i.e., path variables

and, consequently, routing, may not be of primary importance. In such cases, to lower the

complexity, the goal of the exploration problem can be reduced to finding only E∗ and M∗ in

the basis, and X . Also, some architectures can be fully defined using only the presented basis,

and in such cases X = X A (e.g., if some constraints require linearization), or even an empty set.
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3 Exploration Methodology

In this chapter we present the methodology for architecture exploration to select correct-by-

construction configuration and interconnection of system components taken from pre-defined

libraries. We leverage an extensible set of requirement patterns for creating the system specifica-

tion. We then translate this specification to a set of mixed integer linear constraints. Using the

basis of the exploration problem introduced in Chapter 2, we are able to instantiate a variety of

design requirements, such as connectivity, balance, timing, reliability and energy consumption.

We then discuss the mapping problem, which is separated from the topology selection problem.

Interconnection (topology) and implementation (mapping) of the architecture are then jointly

optimized using either monolithic or iterative optimization techniques. We also present two

algorithms that allow the methodology to scale to large designs. The first one is an approximate

technique for encoding generic path constraints, which drastically reduces the problem com-

plexity by guiding the solver to a promising part of the design space. The second algorithm is an

iterative approach for solving optimization problems.

3.1 Overview

In Chapter 2 we have established a computational framework, which leverages a graph-based

representation of a CPS architecture and defines the exploration process as an optimized

selection of system components from a library and system topology (connections and routes

between components) from a template. We have also outlined the generic basis of the explo-

ration problem by encoding both the topology and the mapping into a mixed integer linear

program. The goal of this chapter is to develop a CPS architecture exploration methodology

within the proposed framework and on the top of the defined basis.

Conceptual representation of the methodology is shown on Figure 3.1. Following the principles

of platform-based design [114], we separate the topology selection problem, i.e., whether a

“virtual” component should be used in the architecture and how it is connected to others, from

the mapping problem, i.e., which library component best implements the “virtual” one. The

former requires the exploration of the application (functional) space that incorporates design

requirements defined over the nodes, edges and paths of the architecture templateT. The latter

is related to the selection from the implementation space, i.e., from a libraryL of available “real”

components and connections that captures their related characteristics and provides design
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RequirementsℛA
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Figure 3.1 – Separation of concerns within the proposed architecture exploration method-
ology: topology selection problem (how many components to use and how to connect them)
is decoupled from the mapping problem (which elements from the library implement the
topology in a best way).

alternatives. The final architecture is a meet-in-the-middle of the two spaces and problems,

which is optimized with respect to a cost function. We establish the dependency between

the two problems by defining them within the same formal basis by using the variables and

constraints discussed in Sections 2.2 and 2.3. This results in a mathematical formulation, in

which the decisions made in both spaces affect each other and the design constraints. We use

this formulation to cast an optimization problem for jointly selecting the system topology and

its implementation, and provide a cost-effective and correct-by-construction solution.

In this work, we focus on steady-state, discrete abstractions of CPS, i.e., we select the system

architecture by evaluating the static properties, and abstract the dynamic behavior. However,

as discussed in Section 1.4.2, our approach is complementary and its results can be used

on further stages of design space exploration, such as simulation, to evaluate the system

dynamics. We have chosen mixed integer linear programming as an optimization engine

because its expressiveness allows us to capture a variety of design concerns (as we show later

in this chapter), while state-of-the-art MILP solvers, such as CPLEX [54] or Gurobi [48] are

able to efficiently explore the search space. We have extended existing formulations [12, 99,

108] with support for component sizing (library mapping) and continuous-based decision

variables. Moreover, we improve the usability of MILP-based techniques by introducing a

pattern-based formal language that facilitates the writing of the design specification.

Figure 3.2 illustrates the flow of the proposed methodology, which has four main steps. First of

them is the design specification, which includes the general organization of the system (types
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and maximum number of components, composition rules, functional flows) and application

requirements. Library L is also initialized as a collection of elements of corresponding types,

which represent real components that can be implementation alternatives for the architecture.

The specification is created using patterns, which are short expressions that are intuitively

associated with corresponding requirements and automatically translate them to MILP con-

straints. We further discuss patterns in Chapter 4, where we introduce ARCHEX, a tool that

supports our methodology, and demonstrate their effectiveness in Chapters 5 and 6 of this

dissertation.

Specification part is followed by encoding of the specification into a mixed integer linear

program and formulation of the optimization problem. First, the generic basis introduced

in Section 2.2 is initialized, i.e., the template T is created and its elements are associated

with the ones from library L using mapping constraints. Also, system routes required in the

specification are defined using the path variables and constraints from the basis. Depending

on the problem, each path can be symbolically encoded either as a full enumeration of all

possible sequences of nodes in T or using an approximate algorithm that is introduced in

Section 3.5.1. The basis is then used to translate requirement patterns used in the specification

to corresponding categories of MILP constraints. As discussed in Section 2.3.2, application

requirements are defined on system properties (e.g., latency, reliability) within a particular

scope (e.g., a link, a route, a subsystem of components). Attributes (e.g., delay or failure

probability of a component), which form the properties, as well as the scope of the latter are

computed using basis variables. Properties themselves can also include domain-specific and

auxiliary variables as a part of their expressions. For some of the properties, such as reliability,

approximate algorithms are also applied to obtain a MILP formulation. We demonstrate the

encoding of a variety of CPS requirements in Section 3.2.

Alltogether, set of basis constraints RB , set of application constraints RA and cost function C

compose the optimization problem, which is passed to the next, solving stage of the methodol-

ogy. Here, we use one of the two methods. The eager optimization method solves a monolithic

problem that includes all the optimization constraints. In contrast, the lazy method leverages

a coordination of the specialized solvers. In this paradigm, the MILP solver is called iteratively

on smaller problem instances including only a subset of constraints (e.g., interconnection

constraints) to generate a candidate architecture, and then heuristic functions are applied for

analyzing this architecture and learning new constraints if the latter does not yet meet the

requirements. Both approaches are further discussed in Section 3.4.

Finally, during the analysis stage, generated architectures are evaluated with respect to certain

properties. For example, reliability analysis verifies the functional links of the system to

determine for every sink the probability of being disconnected from all sources (e.g., the

probability of an electrical load on an aircraft to get unpowered). Static timing analysis (STA)

algorithm traverses the architecture graph to compute end-to-end delay of certain paths.

Workload analysis can be applied for estimating the steady-state load at the processing nodes

of the system as well as calculating their idle rates.
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Figure 3.2 – Flow of the proposed architecture exploration methodology: design specification
is encoded into a mixed integer linear program and solved using one of the two approaches
(monolithic or iterative). The outcome is verified using exact analysis techniques.
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In sum, our methodology takes several subsequent steps to convert a design specification into

a correct-by-construction architecture that is optimal with respect to an objective function

(e.g., monetary cost, power consumption, reliability). We decouple the topology selection

(which nodes are used, how they are connected) from the mapping (how the nodes are

implemented), which brings more flexibility to the problem formulation. At the same time, in

contrast with solving the mapping problem on a fixed topology (or vice versa), in our approach

both the topology and the mapping are jointly selected within the same optimization problem.

Therefore, it can be guaranteed that the solution is the optimal combination of the two.

3.2 Application Requirements

The top-down phase of the proposed methodology deals with selecting a system topology (how

the components from the template T are connected) that meets a set of application require-

ments, both functional and non-functional. These requirements are defined at the application

level (top part on Figure 3.1) As discussed in Section 2.3.2, we express design constraints as

bounds on the properties of a system within a particular scope (e.g., for components of a

certain type). The properties are defined as functions over a set of attributes of the architecture

template T, as well as over basis, auxiliary and problem-specific variables. We have shown

that the basis variables β ∈ B are necessary both for the mapping, i.e., computing the template

attributes AT from library attributes AL using mapping variables m ∈ M , and for defining the

scope of computing the property (and the constraint) using topology configuration variables

e ∈ E and path variables {yπ, wπ} ∈ R. In the following, we use these principles to formulate

several different classes of design constraints that, in general, are applicable to various classes

of cyber-physical systems and networks.

3.2.1 Number of Components

While the template T of the architecture has the maximum number of components of every

type as well as all possible connections between them, this does not necessarily hold for the

topology configuration E∗. Unless explicitly required to be instantiated, certain component

types may be completely absent in the final topology. Let mk
i j be entries of the matrix M k ,

which defines the mapping of components of type k to the library. To ensure that at least (at

most, exactly) N such components are instantiated, one can use the following constraint:

|Pk |∑
j=1

(|Lk |∨
i=1

mk
i j

)
≥ (≤,=) N , (3.1)

where Pk and Lk are subsets of, respectively, V and L that include all the elements of type k.

Disjunction in (3.1) determines which components in Pk are used (it can be linearized with

standard techniques shown in Section 2.4.1), and the sum provides their final number.

Similarly, the user can require a certain amount of specific components (i.e., with a particular

subtype s) to be present in the architecture. For example, an electrical power system of an
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aircraft has a certain number of generators (power sources), and at least one of them must be a

battery (emergency power supply) that has to be used in case if all primary generators (engines)

fail. In this case, a submatrix M k,s of M k has to be used, which only includes the rows that are

associated with library components l k,s having the subtype s, and then Constraint (3.1) can

be applied.

3.2.2 Interconnection

Interconnection constraints are used for enforcing valid connections between components

or limiting the number of allowed connections. In cyber-physical systems they can arise

from different contexts. For example, from the functional viewpoint, both the inputs and the

outputs of a manufacturing machine must be connected to conveyors, so that production

units processed by the machine can move along the production line. Similarly, in a power

distribution network, electrical loads must stay connected to some power source. At the same

time, generators must not be connected in parallel, i.e., to the same electrical bus, for safety

concerns. Such requirements can be enforced using linear arithmetic constraints.

The first group of constraints is used to set a bound on the number of connections between

the components of certain types. Let P be a partition over the set V of vertices of the template

T (explained in Section 2.1.3), and A, B and C be sets in P . We can then write the following

expressions:

|B |∑
j=1

eai b j ≥ (≤,=) N ∀i ∈N : 1 ≤ i ≤ |A|, (3.2a)

Nδi ≤ (≥,=)
|B |∑
j=1

eai b j ∀i ∈N : 1 ≤ i ≤ |A|, (3.2b)

where eai b j is an edge from node ai to node b j (and similarly eb j ck ). Constraint (3.2a) pre-

scribes that there exist at least (at most, exactly) N connections from a node in A to a node in B .

One can note that using (=,≥) in (3.2a) with N ≥ 1 forces every node from A to be instantiated,

according to our definitions. Instead, it may be required to enforce the constraint only for the

nodes from A that are used and, at the same time, not to affect the decision of using them. In

this case, Constraint (3.2b) can be applied, which uses auxiliary variables δi that, as shown in

Section 2.1.2, evaluate to true if the component vi is instantiated and zero otherwise. This

constraint is a linearized form of a forced implication: if the left hand side is true, i.e., the

component vi is used, then the right hand side also holds. The latter can also be true if δi = 0,

however, this is equivalent to a non-instantiated component with connections, which will be

restricted by the mapping constraint (2.1a) from the basis.

Another group of constraints defines the “if-then” relationships between incoming and outgo-
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ing connections of nodes using the following expressions:

|A|∨
i=1

eai b j ≤
|C |∨

k=1
eb j ck ∀ j ∈N : 1 ≤ j ≤ |B |, (3.3a)

|A|∨
i=1

eai b j +
|C |∨

k=1
eb j ck ≤ (≥) 1 ∀ j ∈N : 1 ≤ j ≤ |B |. (3.3b)

Constraint (3.3a) states that if node b j has a connection to any node in A, then it must also have

a connection to at least one node in C . In turn, Constraint (3.3b) requires that if b j has (does

not have) a connection to any node in A, then it must not (must) have a connection to a node

in C (i.e., “If A then not B / If not A then B”). In both constraints, disjunction operators that

calculate the least upper bound of the variables, can be linearized using standard techniques.

A bidirectional connection between nodes vi and v j implies that they are connected by two

oppositely directed edges ei j and e j i , i.e., a signal can flow both from vi to v j and vice versa.

Such pairs of connections can represent, for example, contactors between electrical buses,

which allow the power to flow in both directions depending on the system’s dynamic state.

Following expressions are possible:

ei j = e j i ∀i , j ∈N : 1 ≤ i ≤ |A|,1 ≤ i ≤ |B |, (3.4a)

ei j ≤ 1−e j i ∀i , j ∈N : 1 ≤ i ≤ |A|,1 ≤ i ≤ |B |. (3.4b)

Constraints (3.4a) and (3.4b) state, respectively, that the components from A must and must

not have bidirectional connections to components from B .

Finally, our formulation provides additional flexibility and expressiveness by using subtypes

that can be assigned to components as attributes. A subtype corresponds to a feature or a

characteristic of a component, possibly in another dimension of classification. For example,

components of an electrical power system can be grouped by following types: generator,

AC bus, rectifier, DC bus, load. At the same time, these components can have either high

or low voltage levels, which is their key characteristic that defines, in particular, a subset of

composition rules, such as allowing or restricting the direct connections between high and

low voltage devices. In other words, different voltage levels represent different subtypes1.

Component subtypes can be used to add problem-specific composition rules to the formula-

tion, extending the ones provided with the library. Let components from sets A and B (subsets

of the partition P ) be labeled with subtypes s1 and s2, which are incompatible. Following ex-

pression forbids connections between components vi ∈ A having subtype s1 and components

v j ∈ B having subtype s2:

σ
s1
i +σs2

j −1 ≤ 1−ei j ∀i , j ∈N : 1 ≤ i ≤ |A|,1 ≤ i ≤ |B |, (3.5)

1We note that different component types can have same subtypes, e.g., both generators and loads can have
several voltage levels, which have to be considered when connecting these devices.
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where σs1
i and σ

s2
j are auxiliary boolean variables, which evaluate to one if components vi

and v j are mapped to library elements that have, respectively, subtypes s1 and s2, and zero

otherwise. One can obtain their values using the mapping variables m ∈ M . For example, for a

component vi ∈ A, σs1
i can be computed as

∨k mki , with k including the indices of elements

from L that have the subtype s1. A linear encoding for this computation can be obtained using

the techniques summarized in Section 2.4.1.

3.2.3 Balance and Workload

A set of constraints is used to enforce conservation laws or balance equations in physical

systems, e.g., by requiring that the maximum power provided by a source in T is greater than

or equal to the maximum power required by the sinks connected to it (with connectors, buses,

paths etc). Let the node b have an intermediate type in the functional flow F, which is neither

a source nor a sink, and let A and C be the sets of, respectively, direct predecessors and direct

successors of b. Then, a “local” balance equation at the terminals of b can be written as

|A|∑
i=1

xai eai b ≥ (=)
|C |∑
j=1

yc j ebc j , (3.6)

where xai is the input value imposed by ai and yc j is the output value assigned to c j . Such a

“local” assertion can be used, for instance, to express the guarantees of the node b. Alternatively,

given a set of sources A and a set of sinks Z , we can directly write a “global” balance equation

for each source node as

yai ≥ (=)
|Z |∑
j=1

xz jηai z j ∀ i ∈N : 1 ≤ i ≤ |A|, (3.7)

where the variables ηai z j are entries of the walk indicator matrix η, which evaluate to one if

there exists a path (direct walk) from source ai to sink z j , and 0 otherwise (the concept of walk

indicator matrix was previously introduced by N. Bajaj et al in [12]; variables from η can be

related to edge variables ei j using a set of linear arithmetic constraints). Assertions as in (3.7)

can be used to express the guarantees of a source node. Finally, to require that a quantity that

propagates through the system (e.g., production units, electric charge) is not stored in the

intermediate nodes along the path, i.e., everything generated by the source reaches the sink,

one can turn inequalities in expressions (3.6) and (3.7) into equalities.

Example 12 (Flow Balance). We recall the Example 10 of a fuel distribution system. Let each

edge ei j of T be associated with a real variable λi j that expresses the fuel flow through that edge

(e.g., a connecting pipe). The input flow into the components of the fuel system must be equal to

the output flow (except sources and sinks). According to (3.6), we can express the flow balance

constraint for a node v j as
∑|V |

i=1λi j ei j =∑|V |
k=1λ j k e j k . With this MILP constraint, the flows for

output edges e j k will be assigned in a way that no fuel is stored in the intermediate components.

Moreover, flow variables λi j will be forced to zero if the corresponding edge variable is zero.
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A particular concern in system architecture design that makes an extensive use of flow variables

and balance constraints is managing the workload of the system. For example, nodes in T

can represent processor cores or industrial machines. For the architecture to be feasible,

such nodes must be implemented in a way that they are able to handle certain steady-state

values of the input load. In our formulation, they can be labeled with a throughput µ. If the

cumulative flow into a component is higher than its throughput, then it cannot handle the

input traffic, i.e., the system is overloaded and some messages (or production units, requests)

are discarded. This can deteriorate the quality of service of a system as well as the safety. To

avoid overloading, we can bound the incoming workload for node v j as follows:

|V |∑
i=1

λi v j ≤ µ j , (3.8)

requiring that a valid input is processed before the next one arrives. Otherwise it will be

discarded (assuming a deterministic flow). If mk
i j is the element of the mapping matrix M k

associated with v j and component l k
i in Lk , k being the type of v j (e.g., a processor), and

µLk is the vector of throughputs for the components in Lk , then, according to (2.5), we have

µ j =∑|Lk |
i=1 mi jµ

Lk

i .

In general, stochastic input flows can also be considered, so that λi j represents the mean

value of some probability distribution (e.g., exponential) or some worst-case value. While the

dynamic behavior of a CPS has to be studied with other techniques, such as simulation, our

methodology allows us to provide guarantees for some static (steady-state) combination of

parameters that represent system dynamics. For instance, one can set up a tight constraint on

the workload considering some heavy traffic (large values of λ) and generate architectures that

are able to cope with such inputs, which also guarantees that smaller loads can be handled

by the system. Similarly, one may find out that a feasible architecture does not exist, so that

relaxing the workload or some other constraint may be required.

3.2.4 Reliability

In safety-critical applications, reliability requirements prescribe that a functional link must be

guaranteed with a certain probability for a system to operate correctly, that is, the probability

for a sink to be disconnected from all sources should be less than a desired threshold. In

general, to formulate a reliability constraint, one needs to compute the probability of compos-

ite failure events in the system, starting from the failure probability of components. Several

assumptions are made: when the component fails, no recovery is possible and the adjacent

links are no longer usable, and failures in different components are independent. A symbolic

constraint can then be recursively computed to enumerate all possible failure events. As dis-

cussed in [12], such exact computation has exponential complexity, as well as the enumeration

of all possible topology configurations of the template T. In other words, this soon leads to

problem formulations that are untractable. Moreover, such symbolic constraints are highly

nonlinear and extremely complex, so using MILP is not possible.
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Instead, to capture this class of constraints, we leverage the efficient mixed integer linear

encoding techniques based on the approximate reliability computations proposed by P. Nuzzo

in [96]. These estimations still have the correct order of magnitude and stay within an explicit

theoretical bound on the approximation error. They are based on the notion of degree of

redundancy hi j , which is a number of components of type j used in at least one path of a

functional link Fi . With this notion, the failure probability of Fi can be estimated as follows:

r̃i = ∑
j∈Ii

hi j p
hi j

j (3.9)

where Ii is the set of all component types that jointly implement Fi , p j is the failure probability

of any of the components of type j. Values of hi j can be computed as
∑|P j |

k=1ηki with P j being the

subset of V containing all nodes of type j and ηki being the values of the walk indicator matrix

η (introduced in [12] and previously mentioned in Section 3.2.3). The reliability constraint can

then be defined simply as

r̃ < r∗ ∀i ∈ Fi . (3.10)

Expression (3.9) is nonlinear but there exists a linear encoding using auxiliary binary variables

and constraints. We refer the reader to [96] for details.

3.2.5 Timing

A typical timing requirement specifies an upper bound or deadline on the latency (delay) for

performing a certain action (propagating a signal from a source to a sink, delivering a message,

completing a task). The total delay depends on the propagation or processing delays of the

individual components. Such properties in our formulation can be captured with the basis

variables, since they define, in particular, how the signals propagate through the components

of the network. Therefore, we assume that each node and each edge in T is labeled with a

delay τ and consider a simplified delay model, where the delay of a cascade of components is

equal to the sum of the delays of each component and connection. Let Πab be the set of all

paths from source va to sink vb . We can ensure that the propagation delay of each path π in

Πab does not exceed τ∗ by requiring

|V |∑
i=1

τi wπ
i +

|V |∑
i=1

|V |∑
j=1

τi j yπi j ≤ τ∗ ∀ π ∈Πab , (3.11)

where τi is the delay of node vi in T, which can be computed using the formula (2.5). Path

variables wπ
i and yπi j ensure that the non-relevant delays, i.e., delays of components and

connections that do not belong to the path π, will be discarded (such timing constraint

has been illustrated in Example 11). Node delays τi can be, for instance, computation or

processing delays, while edge delays τi j can be interpreted as communication delays (e.g.,

time required for sending a packet over a wireless link). Depending on the specific problem,

some terms in (3.11) may be omitted.
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Certain classes of CPS, such as manufacturing systems, also possess another important timing

characteristic, namely the idle rate of components, which is the difference between the

processing rate and the input flow rate. This quantity has to be either bounded or minimized,

because idle state of the system may be extremely economically inefficient (silicon foundries

are good examples). Let µ j be the processing delay of component v j , and λi j be the input

flow rate to component v j originating from component vi . We can then use the following

constraint to limit the total idle rate of an architecture to be below a required value ϕ∗:

∑
j∈I d x(PU )

(
µ j −

|V |∑
i=1

λi j

)
≤ϕ∗, (3.12)

where I d x(PU ) is a set of indices corresponding to the nodes in V that are labeled as process-

ing units, i.e., can have an idle state.

Constraint (3.11) can be also enforced conditionally based on other system properties. For

example, if the input flow of some production units or details to the manufacturing line

exceeds a certain threshold, i.e., the line is heavily loaded, then it should be subject to a tighter

timing constraint, so that all units can be processed and the system does not slow down. This

may require the processing machines to reconfigure or set higher priority to such inputs, while

still being able to handle other incoming requests. Such conditional timing constraints can be

set up as simple implications:( |V |∑
i=1

λi ,va ≥λ∗
)
⇒ (T = 1), (3.13)

where va is a source node of π, λ∗ is the input rate threshold, after which the timing constraint

must be enforced, and T is an auxiliary Boolean variable that evaluates to one if the Con-

straint (3.11) holds, and zero otherwise (consequently, forcing T to 1 entails that (3.11) must

hold). Expression (3.13) can be easily linearized. In general, such principle can be used also

for activating other types of constraints (e.g., interconnection) based on a specified condition.

3.2.6 Routing

In a network of components, sources have to be connected to sinks by a set of paths (routes),

which must satisfy a set of requirements. These are routing constraints that require, in particu-

lar, the presence (or absence) of certain paths, specify their structure (e.g., nodes of certain

type or subtype must be visited), set an upper or lower bound on their number and length,

enforce the difference between them (e.g., fully disjoint, partly disjoint, equal etc).

As discussed in Section 2.1.3, in our formulation every path (route) π is defined by the sets of

path variables yπ and wπ, which symbolically encode, respectively, the edges and the nodes

of the template T that implement π. Moreover, for the sake of decreasing the complexity

of the optimization problem, they are created only for routing requirements, i.e., for paths

between those nodes that must be connected within a given system. For example, if there is no
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connection required between the source A1 and sink E2 of the templateT shown on Figure 2.1a,

then the path π(A1 → E2) is not declared in the problem formulation as well as the path

variables and constraints for π. Let Q be the set of source-destination pairs of T. Instead

of enumerating all possible pairs, Q only stores those pairs that are specified by the user in

the requirements. If several replicas of a certain path are required, then Q can also contain

duplicates of the same pair.

We have discussed in Section 2.2.2 that only simple (loopless) paths are considered in our

formulation. Therefore, a set of path constraints (2.2)-(2.4b) is automatically enforced for

every path declared by the user. These constraints are a part of the routing requirements.

Hereafter, we formalize an additional set of linear arithmetic constraints that can be set up

for a path, but are optional. In particular, one can require the two paths to be different from

each other, for example, when the network topology has to include several routes between the

same source and sink. It can be expressed as follows:

|V |∑
i=1

(wπ1
i ⊕wπ2

i ) ≥ N∗
di f f , (3.14)

where N∗
di f f is the number of differences (in terms of nodes) that paths π1 and π2 must

have. Similar expression can be defined with the edge variables yπ. Such constraints allow

designers to flexibly specify some degree of distinction between routes, ranging from a single

node (or edge) being different in π1 and π2 to the maximum difference. They are commonly

defined for replicas of the same route to force at least one difference between them (otherwise

it may happen that they will be equal, because the optimizer tries to minimize the system

cost, which is valid but does not make sense from the functional/routing point of view). The

XOR operation in Constraint (3.14) can be written in linear form by introducing an auxiliary

Boolean variable zi for each i and adding following constraints: zi ≤ wπ1
i +wπ2

i , zi ≥ wπ1
i −wπ2

i ,

zi ≥ wπ2
i −wπ1

i , zi ≤ 2−wπ1
i −wπ2

i .

It may also be required that two routes are independent (completely disjoint). This is a

common concern in routing, which increases the network resiliency: when the primary (best)

route is not available, an alternative one can be used. The constraints can assume the following

form:

yπ1
i j + yπ2

i j ≤ 1 ∀i , j ∈N : 1 ≤ i , j ≤ |V |, (3.15a)

wπ1
i +wπ2

i −1 ≤ 0 ∀i ∈N : 1 ≤ i ≤ |V |, i 6= {a,b}, (3.15b)

where a and b are numerical indices of source and sink nodes in E . Constraint (3.15a) states

that all edges of π1 and π2 must be disjoint, i.e., there are no edges ei j such that both yπ1
i j and

yπ2
i j evaluate to one. Constraint (3.15b) is a slightly stricter version, which requires all nodes of

π1 and π2 to be different (except the source and the sink).

Example 13 (Path Difference). Figure 3.3a-c illustrates the constraints enforcing the difference

between two paths π1 and π2. On Figure 3.3a, the paths distinct from each other with one node
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Figure 3.3 – Example of path difference constraints: (a) Two paths with difference in one node
(D2 vs D3); (b) Paths with disjoint edges; (c) Paths with disjoint nodes.

(D2 and D3 for, respectively, π1 and π2), i.e., Constraint (3.14) is applied with N∗
di f f = 1. Paths

on Figure 3.3b have disjoint edges, which satisfies (3.15a), while they still share a common node

(C3). Finally, paths on Figure 3.3c are completely disjoint both in terms of nodes and edges as

required by (3.15b).

It is also possible to set up a bound N∗
hops on the number of hops of the path π:

∑
i , j

yπi j ≤ (≥,=) N∗
hops . (3.16)

Similarly, the max (min, exact) number of nodes in π can be required.

Alltogether, the routing constraints (including the path constraints from the basis) allow great

flexibility in defining the system paths and setting up the restrictions for them. In a broad

sense, they can be seen as interconnection constraints, however, we classify them in a separate

group as having slightly broader, system-wide scope, while the former are more associated

with direct connections between components. We further exemplify them in Chapter 6.

3.2.7 Link Quality

One of the important domains for applying the presented architecture exploration method-

ology is wireless communication, which is a crucial part of networked embedded and cyber-

physical systems. The three following categories of design requirements focus primarily on

this domain.

Many Quality of Service (QoS) metrics of a wireless network (e.g., latency, energy consumption,

packet loss) depend on the link quality (LQ), which can be expressed using different metrics.

Overall, constraints that specify a bound on the LQ, play a significant role in synthesizing

wireless network topologies. Such constraints are typically defined in the scope of network

routes, i.e., they are end-to-end and can differ from route to route. Therefore, they extensively

53



Chapter 3. Exploration Methodology

use the path variables yπ and wπ from the basis of the exploration problem, which further

demonstrates their importance in problem formulations.

One of the most used metrics for defining the LQ is received signal strength (RSS) of wireless

links. RSS is measured by the receiving radio and depends on several factors including the

signal propagation in the wireless channel as well as transmitting and receiving device charac-

teristics. In our formulation, edges of the network template T can be labeled with real decision

variables RSSi j which can be computed using the following constraint:

RSSi j = PLi j + t xi + gi + g j 1 ≤ i , j ≤ |V |. (3.17)

Constraint (3.17) computes the RSS of every link ei j between a transmitter (TX) vi and receiver

(RX) v j as a sum of the link path loss PLi j , TX and RX antenna gains gi and g j , and TX power

t xi . The value of PLi j can be analytically estimated using a channel model, such as the log-

distance model [110]. The rest are component attributes and can be computed by associating

them to corresponding values from L using the formula (2.5). For example, let gL be the

vector of antenna gains for the components in L and mi j be the element of the mapping

matrix M associated with node v j and component li ∈L. Then, we have g j = ∑|L|
i=1 mi j gL

i .

Similarly, one can compute other attribute values, e.g., TX power.

We model the noise in the wireless channel by associating edges ei j of the network graph

(wireless links) with numerical values γi j . These values can model the backround noise caused

by different reasons, for example, by an interfering communication device (e.g., WiFi router)

located in the area. The noise can be estimated analytically or through measurements, which

can bring different levels of accuracy for channel modeling. Using the values γi j , another

important LQ metric, namely Signal-to-Noise ratio (SNR), can be computed simply as

SN Ri j = RSSi j −γi j . (3.18)

Further, such metrics as Bit Error Rate (BER), Packet Error Rate (PER) and the number of

expected transmissions, also known as ETX, can be considered as LQ constraints. The cor-

responding attributes BERi j , PERi j and ET Xi j of edges ei j can be computed as follows:

BERi j = 1

2
erfc

(√
SN R∗

i j

)
, (3.19a)

PERi j = 1− (1−BERi j )N , (3.19b)

ET Xi j = 1

1−PERi j
, (3.19c)

where SN R∗
i j is the normalized signal-to-noise ratio of the link (“SNR per bit”) and N is the

packet length. We note that (3.19a) defines the BER assuming a QPSK modulation and can be

computed differently for other types of modulation. Overall, it can be clearly observed that

all the expressions above are highly nonlinear in the real variables involved. Nevertheless,

they can still be encoded as MILP constraints by using a linear approximation in a form of
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a lookup table that we introduced in Section 2.4.2. In current case, several intervals of SNR

of length 0.5 dB or 1 dB each can be considered, and corresponding values of BER, PER or

ETX (depending on the ones used in the formulation) can be precomputed for each interval.

Similar approach is used in some existing network simulators, e.g., Castalia [19]. We omit the

resulting linear expressions for brevity.

Finally, all the LQ metrics presented above are related to the edges of the template T. Using

the basis variables yπ it is easy to set up link quality requirements as bounds on these metrics.

We exemplify them for RSS and BER constraints for a route π that can be written as follows:

RSSi j yπi j ≥ RSS∗ 1 ≤ i , j ≤ |V |, (3.20a)

BERi j yπi j ≤ BER∗ 1 ≤ i , j ≤ |V |, (3.20b)

where RSS∗ and BER∗ are, respectively, the minimum RSS and the maximum BER of a

signal transmitted over every link of π. Similarly, these constraints can be defined for other

LQ metrics. Also, the bounds can be enforced only on certain links within a route or on a

particular link, which can be a member of several routes. In the former case, the scope of the

constraints can be easily manipulated by using only dedicated variables yπi j , while in the latter

case it is more convenient to use edge variables ei j ∈ E .

We also note that, unlike network simulators, the path loss values PLi j of wireless links are

computed only once, i.e., a static case is assumed, in which every signal transmitted from

vi to v j has the same attenuation. This is a simplification, and in practice signal behavior

is affected by various random factors, such as multipath propagation, sporadic interference

and so on. Path loss can be computed using different channel models, and it is important to

carefully select and calibrate the proper one. Also, channel measurements and surveys can be

used, as done, for example, in [108]. Overall, for obtaining the LQ guarantees on generated

topologies, one can consider worst-case scenarios with respect to the channel model used

(e.g., worst possible path loss). We further discuss this issue in Section 6.3, where we propose

a set of improvements for conventional models of the wireless channel.

3.2.8 Energy Consumption

Energy consumption is a common concern in designing networked CPS. It can affect the

utilization cost of the system as well as its lifetime, or the lifetime of some of its components

(especially if they are battery powered). In general, to compute the energy consumed by a

system or its parts, one has to estimate the respective amounts consumed by its components

and connections (nodes and edges in our formulation). For diffenent systems, these energies

can be computed differently, based on the type of the physical plant, a network protocol and

so on. In this thesis, we exemplify this type of requirements for the wireless network domain.

Wireless devices consume energy primarily by sending and receiving signals (messages, pack-

ets) over the wireless channel, i.e., the radio is the main consumer. However, other com-

poments can also highly affect the energy consumption and node lifetime in the long run.
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Therefore, it is required to consider them as well during estimations. Every component in

the network template T can be labeled with the current drawn by its hardware (e.g., radio,

CPU, sensors) in different operating modes. In this example, we distinguish between the radio

TX and RX current cT X and cR X , while all the remaining current values for active and sleep

modes are cumulatively denoted by, respectively, cacti ve and c sl eep . We also label the wireless

links ei j with the following values: bit rate bi j of links (assumed to be constant) and energies

εT X
i j ,εR X

i j consumed for sending/receiving a data packet over these links. The latter are real

decision variables and can be computed as follows:

εT X
i j = ET Xi j ·U · cT X

i · N

bi j
∀i , j ∈N : 1 ≤ i , j ≤ |V |, (3.21a)

εR X
j i = ET X j i ·U · cR X

j · N

bi j
∀i , j ∈N : 1 ≤ i , j ≤ |V |, (3.21b)

where N is the packet length, U is the voltage (also set up as a constant) and ET Xi j is the

expected number of transmissions of a packet necessary for it to be received without error

at its destination. ET Xi j depends on the path loss and interference and can be computed

as discussed in Section 3.2.7. Values of cT X
i and cR X

j are obtained from the library mapping

using the formula (2.5), while their product with the real variable ET Xi j can be linearized as

shown in 2.4.1. For simplicity, we omit the impact of packet acknowledgements as well as

other system packets stipulated by a particular protocol. For a more accurate computation,

they can also be added to formulas (3.21a)-(3.21b).

We now assume a collision-free Time Division Multiple Access (TDMA) protocol, in which the

nodes wake up only within a few dedicated time slots within each superframe SF for sending

and receiving packets, and that the schedule of the protocol is fixed. There are n slots in SF,

the duration of each is t sl ot , so the superframe duration is t SF = n · t sl ot . The total energy

εr adi o
i consumed by the node vi for communication within a superframe, i.e., for sending and

receiving packets over all routes where vi is involved, can be expressed as

εr adi o
i = εT X

i +εR X
i = ∑

π∈Π

( |V |∑
j=1

εT X
i j yπi j +

|V |∑
j=1

εR X
j i yπj i

)
. (3.22)

In (3.22)Π is the set of all routes declared by the user in the specification, i.e., the contributions

of every path π is considered by the virtue of using the variables yπi j , which belong to the basis

of the architecture exploration problem introduced in Section 2.2. Accurate computation

of energy consumption is one of many examples of their utility. We note that if the period

T of sending packets for some route π is longer than t SF , i.e., a packet is not sent in every

superframe on this route, than the contribution of π has to be scaled by a fraction t SF

T .

Energies εacti ve
i and εsl eep

i consumed in, respectively, active and sleep modes of vi within SF,
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are calculated as

εacti ve
i =U · cacti ve

i · t sl ot ·k, (3.23a)

ε
sl eep
i =U · c sl eep

i · t sl ot (n −k), (3.23b)

where k is the number of time slots in which vi must either transmit or receive assuming each

TX and RX requires a separate slot.

Now, considering a node vi of the wireless network, the following energy consumption con-

straint can be imposed:

εr adi o
i +εacti ve

i +εsl eep
i ≤ ε∗. (3.24)

Constraint (3.24) sets up an upper bound on the energy consumed within a superframe.

Dividing both sides of (3.24) by the superframe duration t SF provides a power consumption

constraint, which may be more convenient to use in certain contexts.

Additionally, we propose a more intuitive way for expressing the energy consumption require-

ments, i.e., by specifying a lower bound on the node lifetime:

Bi

εr adi o
i +εacti ve

i +εsl eep
i

· t SF ≥ L∗, (3.25)

where Bi is the battery capacity of the node vi (assumung it has limited energy resource), and

L∗ is the minimum required lifetime. The left hand side expresses the actual lifetime of vi ,

which is computed as the number of superframes that vi can stay alive with respect to the

energy consumed multiplied by the duration of a superframe t SF . Clearly, Constraint (3.25) is

in nonlinear form due to the division by a sum of real decision variables. It is easy to obtain

an equivalent linear formulation by inverting (3.25), since the remaining terms are constants.

The overall lifetime of a wireless network typically depends on a subset of critical nodes, i.e.,

when these nodes are down, the network cannot function anymore. The network lifetime

constraint, therefore, can be specified by setting a lower bound on the lifetime of this subset

using the formula (3.25).

We model all types of interference using variables γi j that represent the channel noise for links

ei j , while the path loss values of links are provided by a channel model. A more complicated

encoding can be obtained by taking the packet collisions into account. In our formulation, col-

lisions can affect the number of retransmissions and the computation of the ET Xi j attributes

of links, which, in turn, has an influence on energy. To capture their effect, an analytical model,

such as the additive interference model [42] can be used. More simple, links can be labeled

with probabilities of collisions, which can be mean values of a certain distribution. These

labelings will be considered when computing ETX. Overall, a variety of improvements in the

expessions for LQ attributes is possible, and we omit them here, remarking that they can be

encoded similarly to currently shown (3.19a)-(3.19c) by using a lookup table.
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Finally, similar requirements can be obtained for other classes of network protocols, such as

contention-based Carrier Sense Multiple Access (CSMA). The main difference is related to

computing the energies consumed in different states of components. Instead of the lengths

of a slot and a superframe, parameters, such as duty cycle (the overall length of the period of

repeating sleep and active states of the node, similar to a superframe duration) and epoch (pe-

riod for sending packets) should be used. For event-based systems, epoch can be represented

by a mean value of a probability distribution of events that require the nodes to communicate

when they occur.

3.2.9 Localization

Wireless localization and tracking is nowadays being applied in various areas: industrial, retail,

healthcare, building automation. Objects to be localized can be both static (e.g., crates, goods,

medical machinery) or mobile (e.g., workers, hospital personnel or patients, robots etc). Sys-

tems that localize and track mobile objects in real time are well known as Real-Time Location

Systems (RTLS). A variety of technologies and algorithms have been developed/applied for

RTLS, such as WiFi, Wireless Sensor Networks (WSN), Radio Frequency Identification (RFID),

Bluetooth Low Energy (BLE), Ultra wideband (UWB) and others. Several papers provide

comprehensive reviews of existing localization techniques [75, 44, 29].

In this work, we focus on range-based localization systems that estimate distances between

anchor nodes and a target node by using received signal strength, time of arrival or other

related metrics. Evaluation of such systems is typically performed using a set of locations in

the network deployment area, in which the quality of localization (e.g., accuracy, precision) is

estimated [51]. This set of “evaluation locations” can be seen as possible locations of a mobile

device (e.g., cartesian coordinates). LetΛeval be the array of these locations, whileΛT is the

array of locations of nodes in T, so that |ΛT| = |V |. Also, let real variables ri j be the entries of

the reachability matrix r, |r| = |ΛT|× |Λeval |, computed as follows:

ri j = (RSSi j ≥ RSS∗)∧δi 1 ≤ i ≤ |ΛT|, 1 ≤ j ≤ |Λeval |, (3.26)

where δi is a binary variable equal to one if the component vi is used and zero otherwise

(introduced in Section 2.1.2). Constraint (3.26) forces the value of ri j to be true if the mobile

node located at λeval
j ∈Λeval is reachable by vi , i.e., it is able to receive the signal from a node

vi located at λTi ∈ΛT with signal strength of at least RSS∗. Conjunction with δi is linearizable

with standard techniques shown in Section 2.4.1. The values of RSSi j can be computed

similarly to (3.17). Also, other LQ metrics, such as SNR or BER, can be used in (3.26).

According to the formulation above, we define reachability of a mobile device by an anchor

node as a stable link (with an LQ constraint) between the two. We now assume that the

location of the target node, i.e., its coordinates, is calculated using trilateration. The latter

requires a minimum of 3 (4) distances between the target and the anchors to be estimated for

calculating its 2D (3D) location. To satisfy this algorithm requirement, the mobile device must
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Figure 3.4 – Reachability example: locations λ1 −λ4 are reachable by anchor nodes (yellow)
of the localization system, if corresponding RSS values are at least -80 dBm. Some links are
shown in red color, meaning that communication may still be possible, but our reachability
condition is not satisfied. Some links are not shown for simplicity.

be reachable by several anchors in any of its possible locations. We make a simplification by

enforcing this requirement on a set of evaluation locationsΛeval , which can be imposed as

follows:

|ΛT |∑
i=1

ri j ≥ N ∀ j ∈N : 1 ≤ j ≤ |Λeval |. (3.27)

Constraint (3.27) requires that every location from Λeval has to be reachable by at least N

nodes from V . This requirement does not depend on the ranging technique and can guarantee

a reliable coverage of the localization area.

Example 14 (Reachable Anchors). Consider an indoor wireless localization network deploy-

ment on Figure 3.4, where yellow nodes represent network devices (anchors) and green dots are

evaluation locations λi ∈Λeval . A set of links is also shown with corresponding path loss values.

Some anchors are mapped to library devices that have a 5 dB antenna. Transmission (TX)

power is 0dBm for all devices. The system computes a 2D location using trilateration, therefore,

at least 3 anchors must be reachable at a given location in order to provide the functionality.

We impose that location λi is reachable by a wireless node if the RSS at λi is at least -80 dBm

using Constraint (3.26) (assuming that λi is a mobile receiver). With this requirement, λ1 is

reachable by 4 nodes. Location λ2 is reachable by 3 nodes, while this is only possible with

two of them having external antennas, which is a mapping decision. Only two nodes reach

location λ3, while λ4 is unreachable by any node (even though one of the closest ones has an
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antenna). This sample deployment cannot guarantee the proper functionality of the designed

localization system. Enforcing Constraint (3.27) would help to find a proper physical placement

and mapping of anchor nodes in this system.

Overall, the presented constraints do not explicitly manipulate the accuracy of the localization

system. However, the accuracy is indirectly affected by these constraints, since they enforce

the possibility of the target node to communicate with anchors via stable links with good RSS

and/or SNR (using weak links leads to potential errors in distance estimation). The resulting

node placement and mapping (e.g., using antennas or higher TX power on certain devices) will

provide such guarantees. As future work, we plan to extend the list of localization constraints

by supporting a set of metrics related the quality of trilateration, such as the ones from [127]

and [111].

3.3 Mapping Specifications to Implementations

The mapping problem within the proposed architecture exploration methodology deals with

selecting the library components that implement the “virtual” components of the template.

As shown in Section 2.1.2, the mapping problem is encoded using a set of binary variables

m ∈ M so that mi j = 1 if virtual component v j ∈V is implemented by a library element li ∈L.

A set of mapping constraints presented in Section 2.2.1 is added to basis constraints RB to

ensure the correctness of the mapping.

Our formulation of the mapping problem allows it to be separated from topology selection

because a different set of variables (mi j ) is used for encoding it. At the same time, mi j are

associated with the variables ei j ∈ E that define the system topology. However, with such

formulation it is possible to solve the mapping problem for a fixed topology by replacing the

variables ei j with some constant assignment. Similarly it is possible to perform topology selec-

tion with the mapping specified a-priori. That is, the two problems can be solved separately.

This separation, as discussed in Section 2.2.1, results in an encoding that is more general than

the one from [99, 12].

On the other hand, despite the possibility of separately selecting the topology and the mapping,

both of them are parts of the exploration problem and are defined within the same basis. It

is shown in Section 2.3.1 that attributes of the nodes of the template T are computed using

the mapping variables mi j ∈ M . At the same time, these attributes are used as arguments to

compute system properties and impose application constraints on these properties, like it is

demonstrated in Sections 2.3.2 and 3.2. Such interdependence allows for a joint selection and

optimization of the two concerns. The solution for such optimization problem is guaranteed to

be an optimal combination of the topology and the implementation as opposed to separately

optimizing the two. This differs our approach from previous works [99, 12, 108], which select

optimal system and network topologies assuming that the implementation characteristics

of the nodes are known. For example, as further discussed in Section 6.4, Puggelli et al. in

their MILP-based design methodology for wireless sensor networks assume that such device
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parameters as TX power and antenna gain are fixed. Conversely, by the virtue of the mapping

constraints, in our formulation they become additional degrees of freedom of the network.

This allows us to explore a much larger portion of the design space, where more cost-effective

solutions may be found.

Previous works by Bajaj et al. [12] and Nuzzo et al. [99] solve only the topology selection

problem, while the implementation of each component of the template (e.g., a generator

with certain characteristics and cost) is hard-coded in the template T. In general, their

formulation allows encoding a mapping problem that is equivalent to the one proposed

in this thesis, however, as discussed in Section 2.2.1, this would lead to a problem of a much

higher complexity. The template T in these previous works would include nodes that represent

particular implementations from the library L. Therefore, the size of T would be at least |L|
times larger compared to our approach, which would result in a significant growth of variables

and constraints when defining application requirements, especially the complex ones, such as

reliability. Mapping variables in our formulation introduce some overhead as well, but it is

much smaller compared to increasing the size of T. This makes our encoding more efficient

with respect to previous work.

3.4 Solving and Analysis

Having defined the application requirementsRA (Section 3.2), the basis constraintsRB and the

cost function C (Sections 2.2 and 2.3.3) we have all the constituents for casting the architecture

exploration problem as an optimization problem as formalized in (2.10). The result of solving

this problem is an assignment over the decision variable set D = B ∪ X , where B refers to

variables from the basis (topology configuration, mapping and routing), while X includes the

auxiliary and application-specific variables. Below we describe two different techniques of

using the MILP solver for finding an optimal assignment for D .

The first method, monolithic optimization (also called “eager”), simply uses all the optimiza-

tion constraints from RA and RB and aims to solve a single problem, albeit of a potentially

large size. Since some of the constraints may originate from approximations (e.g., reliability

constraints discused in Section 3.2.4 or approximate encoding of network paths presented in

Section 3.5.1), optimality is only guaranteed within the error bound due to the approximation.

If there are no approximate encodings in the problem formulation, then the exact optimal

solution is provided. Eager approach can be naturally used for solving any problem within our

methodology. Its advantage is the global (possibly approximation-wise) optimality guarantee

for the resulting architecture. The main drawback is the potentially high problem complexity,

especially for large sizes of template T and library L, and complex requirement encodings

with lots of linearizations and auxiliary variables.

The second technique is an iterative (or “lazy”) optimization procedure, initially proposed by

P. Nuzzo in [96]. In Section 3.5.2 we provide a generalized version of the algorithm from [96],

which can be customized for different exploration problems. Instead of formulating a large,
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“flat” optimization problem, it avoids the expensive generation and manipulation of certain

classes of “heavy” constraints in the first place, by leveraging a coordination of specialized

solvers inspired by the lazy ILP Modulo Theories [50, 80] or Satisfiability Modulo Theories

(SMT) [15, 95] paradigms. Here, the MILP solver is called iteratively on smaller problem

instances including only a subset of constraints from RA (e.g., interconection constraints) to

generate candidate architectures. The validity of these architectures is then checked against

the remaining constraints using exact analysis methods. If these constraints are violated, a

conflict-driven learning function is called between the iterations of the MILP-solver. This

function incrementally adds new constraints to the original formulation based on the analysis

of previous outcomes and generated counterexamples. Such technique allows pruning the

search space and rapidly progressing towards a feasible solution. Solving a small number

of simpler problem instances can significantly reduce the execution time with respect to a

monolithic approach. However, global optimality is no longer guaranteed.

The learning functions used in the “lazy” approach implement some strategy (heuristic or

exact) that performs a set of actions for guiding the solver towards the feasible portion of the

design space. These actions may include adding or removing a connection, mapping some

node or edge to a particular implementation, enforcing a route between the nodes, and others.

The resulting outcome of the function, i.e., the learned constraints, guarantee that the solution

of MILP at a next iteration refines the overall system quality, either improving a cost or a certain

property being analyzed. On the whole, iterative optimization makes it easier to incorporate a

domain-specific knowledge to the exploration problem, since a designer can customize the

techniques adopted to improve the quality at each iteration. Another advantage is the high

performance of the optimization that is achieved by solving small problems alternating with

heuristic learning, as opposed to solving a large NP-hard problem. The absence of optimality

guarantees as well as the sophistication of learning algorithms are primary drawbacks.

In the subsequent chapters both solving algorithms are evaluated on different case studies. In

particular, in Chapter 5 we demonstrate that iterative approach provides results (in terms of

system cost) that are competitive to the monolithic optimization with approximate reliability

constraints, while the execution time is several orders of magnitude faster. In Chapter 6 we

focus on the approximate encoding of path constraints from RB to obtain more compact for-

mulation of large-scale wireless network design problems that can still leverage the advances

of the monolithic optimization and MILP overall. An approximate encoding algorithm for

network paths is presented in Section 3.5.1.

Finally, the solution generated by either of the approaches is verified using one of the applica-

ble exact analysis techniques, if any, so that designers are able to evaluate the quality of the

architecture (apart from the value of the cost function). Moreover, these techniques are used

in the “lazy” approach to verify intermediate solutions between the iterations. They compute

some functional or non-functional properties. For example, reliability analysis calculates the

exact failure probabilities of functional links in a system by recursively traversing the graph

from the sink to sources of the link, evaluating the probabilities of individual failure events and
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joining them to obtain a total failure probability. A corresponding analysis algorithm has been

proposed in [99]. The latency of system paths can be estimated using a static timing analysis

(STA) routine, which is also a graph traversal algorithm. The information provided by STA can

be used to determine critical paths, timing constraint violations as well as for other purposes.

The workload analysis can be applied to compute the static load of system components and

give understanding on how the flows are spread across the system. A lifetime analysis can be

run to estimate, how long the system can perform its operation. For example, in a wireless

network such estimation is related to the energy consumption and can be computed similarly

to the corresponding requirement explained in Section 3.2.8.

3.5 Algorithms

In the following, we present two algorithms that allow designers to leverage the full power

of our architecture exploration methodology, in particular, for large-scale problems and

sophisticated design requirements. The first one replaces the exhaustive enumeration of all

possible nodes and edges in the encoding of required system paths with a more compact,

yet approximate, representation. This allows solving MILP for large systems (hundreds of

nodes), while being competitive both to the exact formulation in terms of cost and to a

heuristic algorithm in terms of performance. Moreover, the tradeoff between the two can be

adjusted. Second algorithm is the generalized version of the MILP-MR (Mixed Integer Linear

Programming Modulo Reliability) algorithm originally proposed in [12, 96], which implements

the “lazy” solving method of the exploration problem.

3.5.1 Approximate Encoding of Network Paths

Every path π from routing requirements can be encoded using n2 variables from the set yπ

and n variables from the set wπ, n being equal to |V |, which correspond, respectively, to all the

edges and nodes of the template T. This encoding allows exhaustive exploration of network

topologies, since any node and any edge may be a member of π, but becomes inefficient when

either the size of T or the number of required paths increase. For every π at least n2 +5n

constraints introduced in Section 2.2.2 are added to the optimization problem. Entries of yπ

and wπ are further used in other network constraints (e.g., link quality or energy consumption

constraints) and often multiplied by other decision variables. Each product of binary variables

must be translated into a linear constraint by introducing auxiliary variables and constraints

to the original non-linear formulation using one of linearization techniques from Section 2.4.

All of these steps may result in a significant growth of problem size and solver time.

We propose to trade generality with complexity of the exploration problem by implementing

an algorithm for a more compact, yet approximate, encoding of network paths. The main idea

behind our method is to direct the search toward a smaller number of candidate alternatives

instead of considering all possible nodes and edges from T in every required path. We assign

a domain-specific weight criterion for graph edges and execute Yen’s K-shortest path algo-
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Algorithm 1: Approximate path encoding
Given: Network template T = (V ,E)
Input: Set Q of pairs (s,d), weight matrix W , number of path candidates K ∗
Output: Set R = {y q |q ∈Q} of path variables, set Cons of path constraints

1 Cons ← [ ]
2 Q+ ← FINDREPLICAS(Q)
3 forall q ∈Q+ do
4 (K ,N rep) ← BREAKDOWN(K ∗)

5 (y q
1 , . . . , y q

|E |) ← 0; W ′ ←W ; NewCons ← [ ]

6 for n = 1 to N rep do
7 (p1, . . . , pK ) ← KSHORTEST(W ′, sq ,dq ,K )
8 for k = 1 to K do
9 v ← GETVARIABLES(pk )

10 y q ← ADDVARIABLES(v)

11 NewCons ← NewCons ∨∧|v |
i=1 vi

12 W ′ ← REMOVEMINDISJOINTPATH(W ′, (p1, . . . , pK ))
13 R ← R ∪ y q

14 Cons ←Cons ∪NewCons
15 return (R,Cons)

rithm [128] to select a number K ∗ of the path candidates for every network route specified in

the requirements. We then symbolically encode the proposed paths using a smaller number

of edge variables to obtain the final path constraint, as summarized in Algorithm 1.

The function FINDREPLICAS(Q) extends the input set Q to a set Q+ with a number of copies

of each source-destination pair (s,d) corresponding to the required amount of replicas (re-

dundant paths) for this pair. By analyzing the routing requirements for a pair q ∈ Q+, the

function BREAKDOWN(K ∗) splits the required number of candidate paths K ∗ into N rep, the

required number of disjoint replicas for q , and K , the required number of candidate paths

for each replica, such that N rep ·K ≥ K ∗ (line 4). Then, q is associated with a vector y q , where

|y q | = |E |, and K ∗ candidate paths are generated for q as follows (lines 6-13). KSHORTEST runs

Yen’s K-shortest path routine to generate K “best” paths p1 . . . pK in non-decreasing order of

cost (line 7), by using the matrix W to assign weights to edges. Every generated path pk is then

processed and a binary variable is assigned to every edge between the nodes of pk (line 9).

The vector v of these variables is added to y q (line 10). Also, the path constraint NewCons

is updated (line 11). It requires that one of the proposed paths has to be selected in the final

topology. The path generation procedure above is repeated N rep times. At each iteration,

the function DISCONNECTMINDISJOINTPATH identifies a path, which has maximum number

of edges in common with other paths, i.e., it is minimally disjoint from others. This path is

disconnected from the graph, so that the following iteration will generate at least one path

that is completely independent from the previous ones (in practice, restricting the most used

edges leads to larger amount of disjoint replicas). This ensures that at least N rep of the K ∗

proposed paths will be disjoint, as per the routing requirement. Disconnecting a path can

be done by manipulating the weights of corresponding edges in a way that the shortest path

routine does not consider them on the next call (e.g., by setting their values to infinity). The
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process is repeated for every q until all path candidates and corresponding constraints are

generated, and then the algorithm terminates.

Depending on the concrete problem, entries of the weight matrix W , i.e., the weights assigned

to graph edges, can be associated to different properties of the system or the environment. For

example, in a wireless network they can represent path loss values or signal-to-noise ratios

of corresponding links. Moreover, W can be preprocessed to restrict certain connections

according to composition rules of the platform library or some design requirements (e.g.,

“weak” wireless links with large path loss can be discarded). This is done to guarantee that all

selected path candidates satisfy other concerns of the specification, such as link quality of

network routes.

The worst case number of path variables yπ needed for every required route is K ∗(n−1), rather

than n2, assuming that every new path consists of n = |V | nodes and all K ∗ paths are disjoint.

However, the situation is much better in practice, since realistic network paths typically

contain only few hops and share common links. Moreover, path constraints (2.2), (2.4a)-(2.4b)

can be omitted since the validity of generated paths is guaranteed by the shortest path routine.

Further reduction is also achieved in other constraints that use the path variables from the

basis, because the latter have to be defined only for nodes and edges which are members of

some candidate path. K ∗ controls the gap between solutions obtained with and without the

approximation and can be adjusted to trade optimality with execution time.

Finally, the proposed path encoding algorithm is general and can be applied to any weighted

directed graph model, independently of the specific application domain. We run the experi-

mental evaluation of Algorithm 1 on a wireless sensor network case study in Chapter 6. Results

confirm that using approximate path encoding significantly improves the scalability of the

exploration problem and decrease the complexity and execution time by orders of magnitude.

The effect of manipulating the parameter K ∗ is also studied to explore the tradeoff between

optimality and complexity provided by the algorithm.

3.5.2 Iterative Optimization and Learning

An iterative MILP-based optimization technique has first been proposed by Hang et al. in [50]

and later adopted by P. Nuzzo et al. in [96, 12] as a MILP Modulo Reliability (MILP-MR)

algorithm for synthesizing reliable and cost-effective CPS architectures. In Algorithm 2 we

generalize MILP-MR with respect to our generic formulation of the CPS architecture explo-

ration problem. It can then be customized for iterative optimization and design exploration of

CPS under different concerns.

The exploration problem is defined within the basis B introduced in Section 2 with possible

assistance of domain-specific discrete or continuous decision variables X (e.g., flow rates). At

each iteration the generated architecture G∗ will be verified against the requirement (property)

r∗ with r being the value of this property in G∗. First, r is assigned with initial value (line 1)

such that it does not satisfy the requirement (greater, less or not equal to r∗ depending on the
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Algorithm 2: Iterative optimization
Given: Basis B of the exploration problem, set X of domain-specific decision variables
Input: Network template T = (V ,E), library L, requirement r∗, set A of component attributes

(excluding the ones related to r∗)
Output: Final architecture G∗, i.e., topology configuration E∗, mapping M∗ and routing R∗

1 r ← INITREQUIREMENT(r∗)
2 (C,RA ,RB ) ← GENMILP(T,L,A)
3 while VERIFY(r,r∗) = Unsat do
4 G∗ ← SOLVEMILP(C,RA ,RB )
5 if G∗ = [ ] then
6 return Infeasible
7 r ← RUNANALYSIS(G∗)
8 if VERIFY(r,r∗) = Unsat then
9 σ← GETCOUNTEREXAMPLE(r,r∗,G∗)

10 Cons ← LEARNCONS(σ,G∗)
11 if Cons = [ ] then
12 return Infeasible
13 RA ←RA ∪Cons
14 return G∗

concrete problem). The MILP formulation of the exploration problem is then generated as

a combination of cost function C, application constraints RA and basis constraints RB . We

note that the generated MILP problem is smaller than the monolithic one, which includes all

possible constraints, because constraints on the properties related to r∗ (e.g., reliability) are

not added to the formulation, i.e., A does not include corresponding component attributes

(e.g., failure probabilities).

The MILP problem is then solved in a loop with analysis and learning routines (lines 3-13).

SOLVEMILP generates minimum cost architectures G∗ (line 4). The RUNANALYSIS routine

(line 7) (e.g., reliability analysis, timing analysis) evaluates the solution and computes the

current value of the property r , which is then compared with the requirement r∗(line 8). If the

candidate architecture does not satisfy r∗ (Unsat is returned by VERIFY), then a counterex-

ample σ is generated (line 9), i.e., a property in a certain scope (e.g., reliability of a particular

functional link, latency of some path) that violates r∗. The learning function LEARNCONS then

uses σ to generate a set of additional MILP constraints that augment the original optimization

problem (line 10). This is done by suggesting a set of strategies for improving the existing

architecture and guiding the solver towards a feasible one. LEARNCONS is, therefore, instru-

mental to efficiently converge towards a satisfying assignment over the decision variables,

while minimizing the number of calls to RUNANALYSIS.

The overall result is, in general, sub-optimal with respect to the monolithic formulation but

the satisfaction of the requirement r∗ is guaranteed by the exact analysis routine. At the same

time, Algorithm 2 can terminate with Infeasible when either LEARNCONS or SOLVEMILP

terminates with Infeasible. In the former case, the learning function is no more able to

generate additional constraints and, therefore, we infer that no more moves can be made to
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improve the current architecture, while the requirement r∗ is still not satisfied. For example,

no more additional network paths can be proposed to increase the reliability of a functional

link. In the latter case, we infer that SOLVEMILP fails to find a feasible assignment to the

problem, which means either that the original formulation is inconsistent or some constraint

recently generated by LEARNCONS is incompatible with existing ones. The rigorous proof of

correctness of the algorithm directly follows the same proof for the MILP Modulo Reliability

(MILP-MR) algorithm and can be found in [96].
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4 ARCHEX 2.0: Architecture Exploration Frame-
work

In this chapter we introduce ARCHEX 2.0, an extensible optimization-based framework for cyber-

physical system architecture exploration that supports all steps of the proposed methodology.

It allows exploration problems to be efficiently formulated and solved as MILP optimization

problems by using the algorithms presented in Chapter 3. The software structure of ARCHEX 2.0

is modular and amenable to design reuse. We provide a high-level overview of the framework

outlining its main components and classes. We also present an extension for wireless network

topology design that provides handling of plans and maps of the deployment area, encodings

for domain-specific requirements (e.g., link quality) and several channel models for analytical

estimation of the path loss of wireless links. We then discuss the requirement patterns that

lower the effort of problem formulation by automatically creating the MILP constraints from

the specification. These patterns implement the constraints presented in Section 3.2 and thus

allow us to capture a variety of design concerns. Finally, we give a short overview of using the

framework and exemplify the main steps to be taken by the designer.

4.1 Overview

So far we have established a computational framework for representing cyber-physical system

architectures as networks of components that can be implemented by elements taken from

domain-specific libraries. One of the early design stages, the architecture exploration, deals

with selecting a feasible (and, possibly, optimal) architecture from a large space of candidates.

The theoretical part of Chapter 2 includes the formulation of such exploration problems as

optimization problems. In Chapter 3 we have developed this theoretical background into an

optimization-based methodology, which includes writing design specifications, generating

their mixed integer linear formulations, solving optimization problems and analyzing the

obtained architectures. For applying the methodology to a certain CPS domain, it has to

be instrumented with supporting tools that implement the proposed encoding and solving

algorithms, and enable efficient co-design with correctness guarantees.

Instead of a domain-specific design tool, in this thesis we opt for an architecture exploration

framework, i.e., a set of coherent functionalities that can be selectively adapted to different

application domains and requirements by reusing and extending them. Therefore, we propose
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Figure 4.1 – Overview of the ARCHEX 2.0 framework.

ARCHEX 2.0 [62] as a design artifact for formulating and solving architecture exploration

problems using a set of generic requirement patterns. It relies on a set of abstract classes

and reusable data structures. A developer can customize them to implement new patterns,

which can support broader categories of CPS designs, or implement new, possibly more

specific, classes to solve particular problems. Initial version of ARCHEX has been proposed

in [12] as a prototype toolbox for exploration and synthesis of reliable and cost-effective

architectures of aircraft electrical power systems. We have amended the previous version

by completely re-engineering the software infrastructure and generalizing existing concepts

(e.g., reliability constraints) so that they can be applied to different CPS domains. Also, as

discussed in Section 3.3, the mapping problem has been separated from the topology selection

problem. Overall, ARCHEX 2.01 fully conforms to the theory presented in this thesis: explo-

ration problems are defined within the generic basis presented in Chapter 2. Moreover, we

have implemented a large number of patterns corresponding to requirements presented in

Section 3.2 (a comprehensive list of existing patterns is shown in Section 4.2) and provided a

significant extension for wireless network design. Furthermore, the pattern language can now

be used to write specifications as text files, instead of using them in the application code.

The basic overview of the ARCHEX framework is shown on Figure 4.1. The tool accepts the

design specification and the library of components and contracts as inputs and then internally

translates them to MILP constraints that form an optimization problem. The generated for-

mulation is either solved in full (“eager” approach discussed in Section 3.4) or iteratively with

current optimization results being verified by a theory solver (e.g., reliability) that attempts

to improve the solution by proposing additional constraints to the original problem. The

latter “lazy” technique and the corresponding algorithm have been discussed in Section 3.5.2.

Approximate encodings, such as reliability constraints [12, 96] or path constraints (see Sec-

1In the following, the version number (2.0) is sometimes omitted for brevity.
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tion 3.5.1 and Algorithm 1) may be used to generate monolithic problem formulations that

are tractable. That is, the result of the “eager” optimization may be optimal with respect

to an approximation of the constraints. In contrast, the “lazy” approach aims at avoiding

heavy constraints and approximations in the formulation, while still accounting for them

via exact analysis of the architecture and gradually progressing towards a feasible solution

using learning functions. In general, this has much smaller complexity, but does not provide

guarantees that the obtained architecture is optimal with respect to initial objective.

ARCHEX 2.0 is offered as a MATLAB [82] toolbox and is available online [1]. It currently uses

CPLEX [54] as a MILP solver and YALMIP [76] as an intermediate interface that facilitates the

problem formulation. The execution flow of ARCHEX together with the main components and

methods is illustrated on Figure 4.2 (formulation and solving flows are shown with, respectively,

semi-transparent blue and green arrows). The input to the toolbox consists of two text files:

specification and library. The specification file includes several parts:

• General information about the system (component types, functional flows) and the

exploration problem (e.g., name, description, cost of an edge etc).

• Structure of the template, i.e., the maximum number of components of each type.

• Composition rules between the system components that allow/restrict certain connec-

tions in the architecture template.

• Problem-specific parameters that are system-wide, e.g., parameters of a communication

protocol, environment characteristics (temperature, pressure, humidity) and others.

• Application requirements in terms of patterns.

As we demonstrate in the following chapters, by the virtue of using requirement patterns, the

size of the specification is kept small (less than hundred rows even for large problems), while

the underlying MILP formulation generated by ARCHEX can be several orders of magnitude

larger (thousands to millions of constraints and variables).

The library is organized as a list of records grouped by component types. Each record repre-

sents a distinct component, and includes a name and a list of attributes belonging to current

(or each) type. Several records can represent the same physical device with different configu-

ration parameters, e.g., a radio transmitter with different TX powers. Therefore, component

sizing can be similarly performed in two ways: selecting a physical device that best imple-

ments the “virtual” component of the template, and exploring a discrete space of configuration

parameters of a chosen implementation. Components in the library can also be labeled with

subtypes. For instance, power sources can be partitioned into low- and high-voltage sources

while still being of the same type, e.g., AC or DC. Such sub-classification is useful, in particular,

for defining interconnection constraints on the architecture, as discussed in Section 3.2.2.

Furthermore, components having the same type and sub-type may be grouped using tags

based on the problem domain. For instance, as shown in Section 5.1.2, we distinguish between
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left and right AC buses in the aircraft electrical power network, based on their location, as

this poses restrictions on the feasible connections. Therefore, tags represent an additional,

problem-specific dimension of classification, and can be used in the patterns together with

types and subtypes.

The class Problem implements the core functionality of the framework. It is an abstract class

that represents the generic exploration problem and has to be inherited by a child class for a

particular CPS domain as further discussed in Section 4.3.1. The constructor of the Problem

class takes specification and library filenames as arguments and executes a sequence of

methods (shown top-down on Figure 4.2) for parsing them and initializing the library and the

architecture template, the mapping, the constraints (application and basis) and the objective

function. Overall, the whole problem formulation is performed when the object is created.

The Helpers package includes a set of static classes, i.e., collections of helper methods, that

facilitate the encoding of the exploration problem to a mixed integer linear program. For

example, classes Template, Mapping and Path are responsible for encoding the basis of the

exploration problem introduced in Chapter 2, and provide corresponding variables (ei j , mi j ,

yπi j and wπ
i ) and basis constraints (mapping and path).

Application requirements are read from the specification and classified by type (e.g., rout-

ing constraints, timing constraints). The Patterns package is a collection of methods that

implement the corresponding requirement patterns. When called from the Problem class,

they return the MILP formulations of the constraints. They are stored together with the cost

function C defined using expressions (2.7) and (2.8). Patterns can also be invoked interactively

by the user if he/she wants to augment the specification without recreating the problem,

which lowers the effort and the time for debugging large problem instances.

After the problem instance is created, user can run the optimization using one of the two

aforementioned algorithms (“eager” is the default one, while the “lazy” can also be used

if a learning function is implemented for the given domain). This is done by calling the

Solve(Cons,Cost) command of the Problem class, where Cons includes the application

and basis constraints RA and RB , while Cost is the objective function C. After a solution

is generated, it is verified against a certain criterion using one of the analysis classes (e.g.,

reliability, timing, workload). The latter is implemented as a child of the abstract Analysis class.

As shown in Algorithm 2, iterative optimization scheme also uses analysis methods in a loop

with learning constraints and generating new architectures.

The graph representation of the final architecture is shown and saved to disk. Every node in

the graph also stores the information about its selected implementation (mapping). Finally,

all input and output data, including specification, generated MILP formulation (constraints)

and solution (assignments over all decision variables, i.e., basis, problem-specific, auxiliary) is

also saved for future reference. Visualization may also include problem specific views, graph

layouts and auxiliary information (e.g., floor plan, transmission coverage and so on).
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4.2 Pattern-Based Requirement Specification

System requirements in specifications are typically expressed in a natural language, e.g., in

English. It is challenging to establish and follow a set of structural rules for such expressions

so that they could be easily recognized by a design automation tool and translated into the

underlying formalism, such as MILP. The reasons include, but are not limited to, word ordering,

grammatical and spelling errors, wrong semantics. On the other hand, creating specifica-

tions in high-level programming languages, or mathematical formulas that capture groups of

requirements, or even at a lower level, i.e., constraint by constraint, can be extremely com-

plicated. First, MILP formulations of CPS architecture exploration problems, even of a small

size, may include thousands of constraints and variables (as well as other formalisms, such as

SAT/SMT). This soon becomes very time consuming. Moreover, the resulting specification is

difficult to review and debug. Second, along with the system domain expertise, designers are

required to have significant knowledge of the mathematical formalisms and methods used by

particular tools, as well as programming skills.

In this work, we propose requirement patterns, an intermediate level between the natural

language and the underlying mixed integer linear formulation. Figure 4.3 illustrates the

approach. ARCHEX allows the users (designers) to operate on a level of a pattern-based formal

language, thus hiding the complex details of the actual MILP representation of the exploration

problem. This significantly lowers the burden of problem formulation, because all underlying

translations and definitions are done automatically by the tool.

An ARCHEX pattern has a name that reflects the associated requirement and a list of arguments,

e.g., the component types or paths to which it applies. Each pattern is used to automatically

generate MILP constraints over the input arguments, operating on corresponding subsets of

decision variables. The access to the actual problem variables and the internal data structures

is transparent to the user, which makes it easier to formulate and solve exploration problems.

A system developer can then leverage these higher-level primitives to encode a problem,

rather than manually generating the underlying optimization constraints, which is a tedious,

error-prone task, often requiring the touch of an optimization expert. In this way, patterns can

also contribute to reducing the chances of errors, and therefore the debugging effort, by virtue

of their abstract nature.

Table 4.1 shows the list of patterns currently supported by ARCHEX. They are grouped by several

categories reflecting corresponding classes of system requirements (e.g., interconnection,

balance, timing). Each pattern is an intuitive abbreviation of a requirement, which is close

to a natural-language expression but still preserves a formal semantics. For example, to

express that “there must be at least one connection between components of type A and

components of type B”, one can use the pattern at_least_n_connections(A,B,1), which is

later translated into a constraint as in (3.2a). Similarly, in_conn_implies_out_conn is used

to encode balance constraints on the component connections (edges): if there is a certain

type of incoming edge then a certain type of outgoing edge must be present. In some patterns

there are optional arguments, such as subtypes, that can be omitted. Such arguments are
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c1: x1 + x14 + x16 – x21 ≤ 1
c2: x2 + x4 + x9 + x11 ≥ 0
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Figure 4.3 – Pattern-based formal language as an intermediate level between requirements
expressed in a natural language and the underlying MILP representation.

marked with prime (e.g., S′).

Mapping patterns include the ones used internally to encode the mapping constraints from the

basis of the exploration problem. Along with that, the pattern in_flow_implies_mapping_to

is useful in some specifications to impose a particular implementation of a component if it

accepts certain type of quantity as input. For example, in a production line, if a machine that

processes the product type A also receives units of the product B , then it must be reconfig-

urable, i.e., mapped to one of the elements from the library that supports reconfigurability

during manufacturing.

The underlying MILP formulations hidden by patterns can be very sophisticated. For example,

min_network_lifetime replaces a set of complex constraints introduced in Section 3.2.8,

which, together with auxiliary linearization constraints, amounts to thousands of inequalities.

At the same time, with this pattern the lifetime requirement can be imposed for the whole

network using a single line in the specification file. The difference between the complexity of

the specification and the generated MILP formulation rapidly grows with the problem size,

and achieves orders of magnitude even for small instances. Therefore, our pattern-based

language significantly improves the usability of the framework, which is further demonstrated

in the following chapters with experimental results.
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Pattern name Description

NUMBER OF COMPONENTS

at_least_N_components(T,S′,N)
There must be at least [at most, exactly] N

component(s) of type T with subtype S.at_most_N_components(T,S′,N)

exactly_N_components(T,S′,N)

INTERCONNECTION

at_least_N_connections(T1,T2,N) Every component of type T1 must be

connected to at least [at most, exactly] N

components of type T2.
at_most_N_connections(T1,T2,N)

exactly_N_connections(T1,T2,N)

at_least_N_connections_if_used(T1,T2,N) Every component of type T1 that is used

(instantiated) must be connected to at least

[exactly] N components of type T2 (this does

not force the unused nodes to have edges).

exactly_N_connections_if_used(T1,T2,N)

in_conn_implies_out_conn(T,Tin,Tout)
If a component of type T has [does not have] an

incoming connection from a component of

type Tin, then it must [not] have an outgoing

connection to a component of type Tout.

no_in_conn_implies_out_conn(T,Tin,Tout)

in_conn_implies_no_out_conn(T,Tin,Tout)

no_in_conn_implies_no_out_conn(T,Tin,Tout)

out_conn_implies_in_conn(T,Tout,Tin)
If a component of type T has [does not have] an

outgoing connection to a component of type

Tout, then it must [not] have an incoming

connection from a component of type Tin.

no_out_conn_implies_in_conn(T,Tout,Tin)

out_conn_implies_no_in_conn(T,Tout,Tin)

no_out_conn_implies_no_in_conn(T,Tout,Tin)

bidirectional_connection(T1,T2) Connections between components of type T1
and T2 must [not] be bidirectional (if node a of

T1 has an edge to node b of T2, then b must [

not] have an edge to a).

no_bidirectional_connection(T1,T2)

cannot_connect(T1,S1,T2,S2)

Components of type T1 that have subtype S1
cannot be connected to components of type T2
that have subtype S2.

PATH AND ROUTING

p= has_path(src,dst)

There must be a path between the nodes src

and dst. The path has a symbolic name p that

can be later used in other patterns in the

specification to refer to current path.

disjoint_edges(p1,p2) Paths p1 and p2 must have disjoint edges.
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disjoint_nodes(p1,p2)
Paths p1 and p2 must have disjoint nodes

(except for the source and the sink).

at_least_N_differences(p1,p2,N) Paths p1 and p2 must have at least [at

most,exactly] N distinct nodes (from each

other).
at_most_N_differences(p1,p2,N)

exactly_N_differences(p1,p2,N)

min_nodes_in_path(p,N)
There must be at least [at most,exactly] N nodes

in the path p.max_nodes_in_path(p,N)

exact_nodes_in_path(p,N)

min_hops_in_path(p,N)
There must be at least [at most,exactly] N hops

(edges) in the path p.max_hops_in_path(p,N)

exact_hops_in_path(p,N)

BALANCE AND WORKLOAD

flow_balance(T,S′)

The input flow into components of type T and

subtype S must be equal to the output flow

from these components (fan in equals fan out).

This is a strict version of Constraints (3.6)-(3.7).

has_sufficient_input(T1,S′1,T2,S′2)

Components of type T1 and subtype S1 must

provide sufficient quantity (e.g., power, fuel,

air) to supply all the components of type T2
and subtype S2. This is a non-strict version of

Constraints (3.6)-(3.7).

no_overloads(T,S′)
Components of type T and subtype S must not

be overloaded (input flow must be less than or

equal to component’s throughput).

RELIABILITY

min_redundant_components(T,S′,N)

There must be at least N redundant

components of type T and subtype S (minimal

degree of redundancy).

max_failprob_of_connection(T1,S′1,T2,S′2,val)

The failure probability of all functional links

between components of type T1 and T2 must

not exceed val.

TIMING

max_latency_of_path(p,val,units)
The latency (delay) of the path p must not

exceed val units (e.g., seconds, minutes).

max_latency_of_component(T,S′,val,units)

The latency (delay) of components of type T

and subtype S must not exceed val units (e.g.,

seconds, minutes).
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max_total_idle_rate(T,val,units)

The total idle rate of components of type T (e.g.,

processing machines, servers) must not exceed

val units (e.g., parts/min).

in_flow_implies_max_latency(F,T,val,units) If the input flow rate to components of type T

[path p] is F (e.g., msg/sec), then the total

latency of these components [this path] must

not exceed val units (e.g., seconds, minutes).

in_flow_implies_max_latency(F,p,val,units)

MAPPING

at_most_one_mapping(T)
Componets of type T can be mapped to at most

one element in the platform library.

if_conn_then_has_mapping_strict(T) If component of type T is connected, then it

must have a mapping to the library. If it is not

connected, then it must not [may] be mapped.
if_conn_then_has_mapping_soft(T)

in_flow_implies_mapping_to(Tin,Sin,T,S) If component of type T has an input flow from a

component of type Tin with subtype Sin, then

it must [not] be mapped to a library element

with subtype S.

in_flow_implies_no_mapping_to(Tin,Sin,T,S)

LINK QUALITY (wireless)

min_received_sig_strength(p,val)
The RSS of every link along the path p must be

at least val dBm (p can also be a single link).

min_signal_to_noise(p,val)
The SNR of every link along the path p must be

at least val dB (p can also be a single link).

max_bit_error_rate(p,val)
The BER of every link along the path p must be

at most val % (p can also be a single link).

max_pkt_error_rate(p,val)
The PER of every link along the path p must be

at most val % (p can also be a single link).

min_pkt_delivery_ratio(p,val)

The packet delivery ratio of every link along the

path p must be at least val % (p can also be a

single link).

max_retransmissions(p,val)

The maximum number of val retransmissions

is allowed for every link of the path p (ETX

constraint).

ENERGY CONSUMPTION (wireless)

min_network_lifetime(val,units) The lifetime of the network [node V] must be at

least val units, e.g., days or years (first

pattern enforces the constraint on all nodes).
min_node_lifetime(V,val,units)
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max_energy_per_period(V,val,t,units)

The energy consumed by the component V

within every period of t units must not exceed

val Joules.

LOCALIZATION (wireless)

min_reachable_devices(loc,N,metric,val)

Every location in the set loc must be reachable

by at least N devices, such that the LQ metric

(e.g., “RSS” or “ETX”) of corresponding links

does not go beyond (or below) val.

Table 4.1 – List of requirement patterns supported by ARCHEX 2.0 grouped by type. Primed
arguments (e.g., S′) are optional.

The patterns in Table 4.1 cover the categories of constraints in Section 3.2 and can be reused

across domains of applications, which is an indication of their power to capture the essence

of the problems of interest. Finally, we note that the presented list of patterns can be incre-

mentally extended to create more expressive, domain-specific languages based on simpler

primitives.

4.3 Structure of the Toolbox

4.3.1 Main Components and Data Structures

ARCHEX has a modular, object-oriented organization aiming both at increasing the usability

of the framework for end users, and for lowering the complexity of extending it and integrating

new patterns, exploration problems and domain-specific features into existing infrastructure.

As stated before, all problems applicable for the proposed architecture exploration methodol-

ogy are defined within the same basis of decision variables and constraints. Therefore, most

ARCHEX classes and data structures that are responsible for problem formulation are imple-

mented in a highly reusable fashion. This makes the framework more general with respect to

possible tools that support the proposed methodology within a single selected domain of CPS.

A simplified class diagram of ARCHEX is shown on Figure 4.4. Some relations are labeled with

the entities provided by one class to another, e.g., variables or constraints. As mentioned in

Section 4.1, core functionalities are implemented in a set of helper classes (Helper and Patterns

packages), while the user creates and controls the Problem class. It is an abstract class that

defines a set of properties (e.g., structures for storing template information, composition rules,

functional flows) and generic routines (e.g., reading the specification, managing inputs and

outputs) that are common for any exploration problem. The class also includes a set of virtual

methods (declarations) that must be implemented by every child class that corresponds to a

particular type (or domain) of problems. These methods include specifying the library, the

template and the association between them, handling the constraints and the cost function,

solving the optimization problem, visualizing and saving the results.
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Figure 4.4 – Simplified class diagram of ARCHEX highlighting the relations between the main
components of the framework. Classes shown in yellow have been implemented as an exten-
sion of the toolbox for wireless network design problems.
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The Component class represents a generic system component with several attributes, e.g., type,

subtype, cost. The class Library is a collection of Component objects. It provides methods

for creating a library from a text file and querying it for different components and attributes.

Every instance of the Problem class has an associated library. Both Component and Library are

generic classes that can be extended with problem-specific atrributes, interfaces and parsing

routines.

The information about the architecture template is stored in the Template class, which is also

associated to Problem. It has methods for managing attributes AT of its elements, i.e., node

and edge labelings, which are either numeric constants or decision variables or some expres-

sions with these variables. Both Library and Template are used by the Mapping helper class

that establishes an association between the two using the mapping variables and constraints

discussed in Section 2.2.1. These constraints then become a part of the basis constraints RB .

Function call createMapping(T,L) of the Problem class is a part of the formulation flow

of ARCHEX (shown on Figure 4.2). Internally, this function refers to the Mapping class that

provides the MILP encoding of the mapping.

As the system representation within our methodology and framework is a directed graph with

most of decision variables being associated either to its nodes or to its edges, the main data

structures of ARCHEX are matrices. Most of them inherit from the generic Matrix class and

are reusable across different problems. In particular, AdjacencyMatrix stores the decision

variables ei j of the topology selection problem, while the entries of QuantityMatrix can be

related to different labelings of edges of the template, which could be Boolean, integer or real

variables (e.g., flows λi j , path variables yπi j ). IncidenceMatrix describes possible connections

between nodes of the template and is used, for example, in path constraints (see Section 2.2.2).

Mapping variables mi j have an associated MappingMatrix class as well. Auxiliary variables ηi j

used in balance and reliability constraints (Sections 3.2.3 and 3.2.4) are stored in the WalkIndi-

catorMatrix structure. Entries of these data structures, as prescribed by the parent Matrix

class, can be addressed with numeric indices, while the groups of variables, i.e., submatrices,

can also be queried according to certain keys (character strings). For example, the adjacency

matrix object can be queried both for the connectivitity between a concrete pair of nodes vi

and v j and between nodes of certain types (e.g., generators and electrical buses) using the

same interface. This provides a lot of flexibility during the implementation.

Every exploration problem has an associated object of the ConstraintHandler class, which

takes care of processing the requirements part of the specification, i.e., parsing and classifying

them, calling the encoding functions for corresponding patterns and storing the obtained

MILP formulations. The user is then able to query ConstraintHandler to add all constraints

related to a particular concern (e.g., interconnection, timing, reliability) to their problem

formulation. The querying can also be more precise, i.e., requirement-wise. This allows the

user to quickly create optimization problems that capture certain design concerns from the

specification. Such manipulation of constraints is useful for quickly refining the formulation

(e.g., tightening the constraints), and for debugging.
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Every requirement pattern has a function that generates the corresponding MILP encoding.

These functions are stored in a collection of classes named in according to the category of the

requirements they encode, e.g., Balance, Reliability or Timing (on Figure 4.4, for brevity, the

Patterns class represents this collection, while in the actual implementation it is a package). In

particular, mapping constraints that belong to the basis of the exploration problem RB are

also encoded using patterns. Every pattern has a corresponding class method that has the

same name as the pattern itself (e.g., flow_balance, in_conn_implies_out_conn, and all

others presented in Section 4.2). The methods are also accessible to the user, so he/she can

manually add extra constraints to the created problem (this also works for learning functions).

Along with the Mapping helper class, there are also several other classes that compose the

Helpers package. For example, the Constraints class is responsible for initializing auxiliary data

structures, such as walk indicator matrices, and for encoding heavy or reusable constraints

to make the pattern classes more compact. The Paths helper class provides the encoding of

network paths (variables yπi j , wπ
i , and path constraints from the basis RB ) using either a full

enumeration of paths or an approximation introduced in Section 3.5.1. The Linearization class

has a set of methods for converting the nonlinear operations (e.g., products of variables, logic

operations) to a linear form so they could be added to the MILP formulation. Linearization

methods are called from pattern methods whenever needed and return auxiliary variables xA

and constraints that are further stored in ConstraintHandler together with the formulations.

The Wireless class provides methods for encoding a set of properties and attributes of wireless

networks (e.g., RSS, BER), which are then used to define the requirements. This and other

classes implemented as a wireless extension of ARCHEX are further discussed in Section 4.3.2.

The two classes, eagerAlgorithm and lazyAlgorithm, implement the two optimization tech-

niques. Depending on the selected algorithm, one of the routines is executed via the solve()

method call in the Problem class. The abstract Analysis class provides a skeleton for different

analysis techniques that must be implemented by the child classes (e.g., by reliability analy-

sis), for example, the run() method. The latter can be called both from the Problem class

and from the lazyAlgorithm to get the results and, if they do not meet the requirements, the

counterexample (e.g., a functional link that does not have enough reliability, a network route

that violates the timing constraints and so on).

Remaining classes are responsible for visualizing the generated architectures and for setting

up the toolbox. The graph of the final architecture can be plotted by calling one of the methods

of the Visualization class. The architecture template, i.e., a reconfigurable graph with all

possible (allowed) connections, can also be drawn. This can help the user to visually verify

the correctness of the specification (number of components, composition rules) as well as to

set up the constraints. Some auxiliary information can also be shown on the graph, e.g., floor

plan, coverage and others. Finally, the Settings class handles the logging of the toolbox as well

as configurations of MILP solvers, i.e., presets of solver-specific settings (e.g., optimization gap,

solution strategy, timeout and so on). Different presets can be used, for example, for different

algorithms (eager, lazy) as well as for different problems. For instance, the optimization gap
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(distance between the current value of the objective and the minimal achievable one) can be

increased, so the solution is generated more quickly without exploring the part of the search

tree. More details are provided in Section 4.4.3.

4.3.2 Extension for Wireless Networks

ARCHEX also includes an extension to a significantly different domain - wireless networks.

These networks are becoming a locomotive of many networked cyber-physical systems being

one of the primary communication channels for exchanging sensing data and control (actua-

tion) commands. Design and calibration of the wireless infrastructure is, therefore, one of the

major tasks in CPS design. As discussed in Section 1.4, a plethora of approaches for wireless

network design have emerged over recent decades. Compared to those, our aim is to provide a

more general framework that is capable to capture more types of heterogeneous requirements

than most of existing tools. This thesis presents a generic basis for encoding CPS exploration

problems as mixed integer linear programs, which allows designers to formulate optimization

problems subject to connectivity, routing, energy consumption, location, timing, and other

constraints. Another distinguishing feature of the methodology is the mapping of network

components to implementations taken from libraries. Most of existing approaches assume

fixed configurations of devices when solving optimization (and other) problems. Overall,

our formulation significantly increases the breadth of the search space compared to related

work, and is able to efficiently encode large problems and find solutions in reasonable time.

Moreover, in our methodology and tool, wireless network topology can be seen as a subsystem

and jointly synthesized with other (physical) components of the CPS.

The wireless extension of ARCHEX is summarized in Figure 4.5. The goal of the exploration

problem is the joint selection of the network components and the topology (node placement

and routing) subject to a set of network requirements (e.g., link quality, routing, power con-

sumption). Along with specification and library text files, the input is extended with a floor

plan SVG (Scalable Vector Graphics) file that stores the information about space dimensions,

obstacles (e.g., walls, doors, windows, furniture), locations of network devices as well as other

auxiliary locations (e.g., for evaluating localization systems, as discussed in Section 3.2.9).

Obstacles (represented by polygons) and node locations can be saved as different layers in

the same SVG file, which is convenient, because several different network templates can be

read from a single file, while adding new locations is easy with an SVG editor. In turn, the

specification file is augmented with the parameters of the channel model (type, related param-

eters), the network protocol (e.g., bit rate, duty cycle, packet size) and the battery (number,

type, capacity).

There are 4 additional classes (shown in yellow on Figure 4.4) that implement the new func-

tionality. The AreaMap class includes a parser for the SVG floor plan that reads all the layers of

the file and stores the information about space dimensions, existing obstacles and locations

in different class properties. Node locations, in particular, are provided as λTi attributes to

the Template class as node labels. They can be seen as candidate locations of the network
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Figure 4.5 – Wireless extension of ARCHEX.

deployment. Every layer in the SVG file has a name, so that a particular candidate deployment

can be used in the specification. Also, certain constraints, such as localization, can be enforced

for a particular set of evaluation locations from the SVG.

One of the important steps in defining the constraints for a wireless network topology is the

calculation of the link path loss. The ChannelModel class provides a set of channel models

that can be used for this calculation and have different levels of accuracy, complexity and

flexibility. We briefly describe them later in this section. Links (edges) of the network template

are labeled with the computed path loss values PLi j . For lowering the size and the time of

the computation, the latter can be skipped for the pairs of nodes that are located far away

from each other according to some distance threshold, assuming that the corresponding link

is not possible. The pruning can be also performed for the incidence matrix of the template

by removing the “impossible” edges, which can significantly decrease the number of path

variables yπi j for every required path π (see path constraint (2.2); smaller size of the matrix

C entails smaller number of edge variables yπ). On the whole, provided channel models, as

well as the mechanisms for handling the area map (e.g., obstacles), support both indoor and

outdoor scenarios.

Computed path loss values are also provided to the Wireless class from the Helpers package.

This class provides a set of methods for defining the attributes related to wireless network

components and links, such as the ones discussed in Section 3.2.7, e.g., received signal strength,

signal-to-noise and others. These attributes are provided as labelings for nodes and edges of

the template and, together with the path loss, they are used for defining the constraints, such

as the ones presented in Sections 3.2.7-3.2.9. The Patterns package is extended with a set of

classes containing corresponding requirements.
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Finally, the Geometry class is used by AreaMap and ChannelModel for various geometric

computations, including, but not limited to, computing the distance between the nodes and

finding all the obstacles that cross the line of sight between the transmitter and the receiver.

Channel Models. ARCHEX currently supports four different channel models. These models

are included in our library in order to map virtual links of the architecture template to real

(physical) ones. The free space model [110] assumes ideal propagation conditions with clear

line-of-sight path between transmitter (TX) and receiver (RX). It is based on the Friis equation,

which is defined as follows:

PLF S = PtGtGrλ
2

(4π)2d 2L
, (4.1)

where PL(d) is the path loss at distance d , Pt is the transmission power, Gt and Gr are

transmitter and receiver antenna gains, L is the system loss factor, and λ is the wavelength.

An improvement to the free space model for long distances is called two-ray ground reflection

model [110]. It also considers the signal reflected by the ground and is defined by the following

formula:

PLRM = PtGtGr h2
t h2

r

d 4L
(4.2)

where ht and hr are TX and RX antenna heights, respectively, while the other terms correspond

to the ones from the formula (4.1). In our formulation, TX power Pt and antenna gains Gt

and Gr are the attributes of the network template, therefore, they are expressed using the

corresponding values from the platform library and the decision variables (mapping). Hence,

the product PtGtGr is nonlinear, but linearization techniques can be applied.

One of the most used channel models, which does not require any nonlinear operations in

our formulation, is the log-distance path loss model [110]. It is actively used, in particular, in

wireless sensor network design tools (e.g., PASES [84], Castalia [19], MiXiM [65] or WSNet [25]).

The model accounts both for propagation path loss, logarithmically decreasing, and for shadow

fading effects using a probabilistic model:

PLLD = PL(d0)+10η log(d/d0)+Xσ (4.3)

where d is the distance between TX and RX antennas, PL(d0) is the path loss at a reference

distance d0, which is typically one meter for indoor WSNs [42], η is the path loss exponent

(PLE), which is determined either empirically or from the literature, and Xσ is a zero-mean

Gaussian random variable with standard deviation σ. The Gaussian random variable accounts

for shadow fading by adding some random error to the propagation path loss. The mean value

of the underlying distribution is typically zero.

Finally, ARCHEX also uses the multi-wall (MW) model [42], which is an extension of the log-

distance model that also accounts for the attenuation in walls and other obstacles. Following
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expression is used:

PLMW = PLLD + ∑
i∈Obst

(
ci W 0

i + li Wi

)
, (4.4)

where Obst is the set of indices of obstacles (in the list of all obstacles in the area) that cross

the line of sight of the currently evaluated link, ci is the number of times that the signal crosses

the obstacle facets, li is the distance the signal travels inside the obstacle, W 0
i and Wi are the

attenuations of the signal, respectively, per every cut of the obstacle’s facets and per every

meter that the signal propagates inside it. Attenuation values depend on the material of

the obstacle. The values of ci and li in our toolbox are computed using the methods of the

Geometry class. The MW model, therefore, uses the path loss computed by the log-distance

formula (4.3), which accounts for distance attenuation and for random shadowing effects, and

augments it with the attenuation in walls and other obstacles along the signal path.

We further note that, despite the complexity of some of the aforementioned models, they still

may give predictions with a large absolute error (e.g., 5-10 dB). Errors in the models may arise

from various factors that are not captured, e.g., interference, multipath propagation (typical

for indoor scenarios) or wave-guiding effects. These and other random factors are modeled

using a probability distribution, such as the normal distribution, which may not be accurate

in certain situations. Furthermore, ARCHEX deals with the architecture design stage and has to

assume static steady-state values for system and environment parameters including the path

loss. The situation is different for network simulators, which can more carefully investigate

the link quality, because the channel model is typically used every time the new signal has

to be transmitted during simulation. In contrast, path loss values in ARCHEX are computed

only once during initialization and encoding of the exploration problem and are, therefore,

constant. On such early design stage, one can consider, for example, worst case values of the

path loss to make the system architecture provide certain guarantees, i.e., run several trials of

the channel model for a given link and select the worst result according to a given criteria.

We use several approaches for improving the quality and the accuracy of the path loss compu-

tation. First, the ChannelModel class can return the worst, best or an average value out from an

adjustable number of trials. Second, similarly to [108], we are able to integrate the site survey

data, i.e., label the links with measured path loss values instead of the ones computed by the

channel model. This can significantly increase the accuracy, but requires a measurement

campaign in the deployment area, which may be hard to conduct especially for a large scale

network. Third, we provide a set of different probability distributions to model the shadowing

effects (e.g., Normal, Lognormal, Gamma, Rayleigh, Weibull, Nakagami-m), so it is possible to

choose a more suitable one according to a given environment. Finally, we have performed

a large set of measurements in indoor office spaces for a 2.4 GHz signal of wireless sensor

networks. We have then statistically characterized the data and proposed a set of additional

improvements for conventional channel models [64]. We provide the measurement and

statistical results and discuss the proposed improvements in Section 6.3 of this thesis.
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4.4 Using ARCHEX: Design Flow

In this section we outline the main steps for using the ARCHEX framework: creating the

specification and the library, solving the exploration problem, tuning the solver parameters,

visualizing and saving the solution. Additional details and demo problems are available in the

public repository [1].

We employ an example from the avionics domain - Fuel Management System (FMS) of an

aircraft [11]. A simplified illustration is given on Figure 4.6. An FMS performs pumping,

managing, and delivering aviation- or jet fuel to the propulsion system and Auxiliary Power

Unit (APU) of an aircraft. All these operations are automatically performed by a control

algorithm and a set of sensors and actuators, which constitute the “cyber” part of the system.

Fuel is piped from a set of tanks to control valves (also known as selector valves), which allow

to choose, which tanks currently feed the engines. In particular, the valve can be shut off

in case of emergency, e.g., fire in the engine. Each valve is connected by a set of pipes and

low-pressure pumps to a fuel filter (or stainer) for water and small particles of sediment. After

passing the filters, fuel is sent under pressure to the inlet side of the fuel injection metering

unit. The metering unit for each engine provides the proper flow of fuel to the distribution

manifold which feeds the injectors. The latter provide the fuel directly to the engines.

We note that, for the sake of demonstrating the functionality of the toolbox, we do not provide

here the whole specification, library or generated architectures of realistic size and level of

detail. Instead, we use a toy example and a very simplified system representation. We assume

following component types: fuel tank (T), low pressure pump (P), filter (F), injector (I) and

engine (E). The architecture template T consists of these five types, while pipes, selector valves

and injection pumps are modeled with edges. Other components of the FMS are neglected

in this example. We further state that pumps P can be connected together via additional

pipes, which allows the fuel from one tank to be forwarded to another part of the system.

Such connections are represented by “horizontal” edges of the architecture graph (between

components of the same type).

The goal of the exploration is to minimize the dollar cost and weight of system components,

i.e., the objective function is a weighted combination of the two concerns. Constraints on

the architecture include number of components, interconnection and flow balance. Once an

architecture that satisfies these constraints is generated, the next step is the synthesis of the

control algorithm, which is out of scope of current work. However, the future work on ARCHEX

involves the development of control-related patterns and integrartion with tools that perform

controller synthesis for a given system architecture.

4.4.1 Creating the Specification

Having described the conceptual organization of the system, as a first step of using ARCHEX

the user has to create the input files (library and specification). These are text files that follow

a particular syntax described below.
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Figure 4.6 – A simplified FMS of a high-wing, twin-engine aircraft [11].

Library. The library input file consists of two parts: description and list of components.

The description part has two parameters: name of the library and list of comma-separated

component types, which are present in this library (based on them the Library class knows

which components to expect while parsing the file):

Name: FMS library;

Types: Engine,Filter,Injector,Pump,Tank;

This description section provides a library name ("FMS library”) and five component type

names. Components list has the following syntax:

Type_name:Name, Subtype, Cost, attr_1, attr_2, ..., attr_n;

Every component entry (row) has type name and a list of attributes of this component after

a colon. Attribute values are separated by commas. The expected ordering of attributes is

defined within a dedicated library class (e.g., FMSLibrary.m). Name, Subtype and Cost are

mandatory attributes for every component. If they are not used they still must be present as

first three attributes of a component, but their values can be omitted.

Other attributes are problem-specific (e.g., weight, fuel capacity for FMS). Their ordering

in the input file is strict and predefined by a corresponding library class according to the

implemented parsing routine. ARCHEX provides dummy library files for different application

domains, which include comments on the ordering of component attributes that can be easily

followed. A part of the library for our example FMS is shown in the snippet below:
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%% COMPONENTS

%Type:Name,Cost($),Subtype,Weight(kg),Capacity(l),Throughput(l/sec);

Tank:FTank1,5000,no_intl_pump,500,460,3;

Tank:FTank2,5000,intl_pump,300,255,2.5;

Tank:FTank3,5000,intl_pump,250,239,3.2;

Pump:Pump1,1500,out_tank,23,,4.2;

Pump:Pump2,2100,in_tank,28,,2.8;

Pump:Pump3,3500,in_tank,20,,3.5;

Pump:Pump4,2600,emergency,15,,3;

Filter:Filter1,1000,active,8,,2.6;

Filter:Filter2,750,passive,5,,2.1;

The listing above illustrates a small collection of FMS components of 3 types: fuel tanks,

pumps and filters. The mandatory attributes (name, cost and subtype) are followed by several

problem-specific ones, e.g., component weight, capacity and throughput. Some attributes

(e.g., capacities for pumps and filters) are omitted, because these components do not have such

characteristics. Subtypes are used to signify component’s additional features. For instance,

Tank2 and Tank3 can have an electrical pump installed internally, which is marked by the

intl_pump subtype, while this is not the case for Tank1. Consequently, some of the pumps

from the library can be mounted inside the tanks and some cannot. Similarly, one can fill in

the whole, possibly much larger, library, with realistic components of fuel systems.

Specification. As previously explained in Section 4.1 and Figure 4.2, the specification file

consists of several parts. The first one is the problem description with several important

inputs, namely, component types used in the problem (similar to the library), functional

flow, name of the problem, tags (in our specification they are not used), and structure of the

objective function. For our example, the problem description looks like following:

BEGIN (Description)

Name: FMS sample problem;

Components: Engine,Filter,Injector,Pump,Tank;

Functional flow: Tank,Pump,Filter,Injector,Engine;

Objective: $(0.5) + Weight(0.5);

END (Description)

Objective function is an equally weighted combination of dollar cost and total weight of

components (ARCHEX generic parser of problem descriptions recognizes “$” as the dollar

cost, while Weight is a problem-specific attribute from the library; weight coefficients for

different members of the objective function are specified in brackets).

The description part is followed by the template structure and composition rules sections,

which define, respectively, the maximum number of components of each type in the template,

and the list of allowed connections between these types. The sections currently have the

following syntax:
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BEGIN (Template)

Tank 2;

Pump 4;

Filter 3;

Injector 3;

Engine 3;

END (TEMPLATE)

BEGIN (Composition rules)

Tank => Pump;

Pump => Pump;

Pump => Filter;

Filter => Injector;

Injector => Engine;

END (Composition rules)

The specified composition rules correspond to the functional flow, i.e., components of pre-

ceding type can only be connected to components of succeeding type (with an exception of

pumps, as mentioned above).

Requirement patterns fill in the last part of the specification. In particular, component types

and subtypes are actively used as arguments for the patterns. While the whole list of constraints

can be larger, below we demonstrate a smaller illustrative part:

BEGIN (Constraints)

exactly_N_components(Tank,2);

exactly_N_components(Engine,3);

at_least_N_components(Pump,emergency,1);

at_least_N_connections(Tank,Pump,1);

at_most_N_connections(Pump,Tank,1);

exactly_N_connections(Engine,Injector,1);

in_conn_implies_out_conn(Pump,Tank,Pump|Filter);

in_conn_implies_out_conn(Filter,Pump,Injector);

in_conn_implies_out_conn(Injector,Filter,Engine);

cannot_connect(Tank,no_intl_pump,Pump,in_tank);

cannot_connect(Tank,intl_pump,Pump,out_tank);

cannot_connect(Pump,in_tank,Filter,active);

no_self_loops(Pump);

has_sufficient_input(Tank,Engine);

...

END (Constraints)

The above list includes patterns from several categories specified in Section 4.2, namely

90



4.4. Using ARCHEX: Design Flow

Number of Components, Interconnection and Balance. The first group (3 patterns) presribes

that all engines and tanks of the architecture template must be used. Moreover, one of

the electrical fuel pumps installed between tanks and filters, must be an emergency pump

(as marked by a corresponding subtype in the library), which is activated when one of the

primary pumps fails. Following groups of constraints ensure the valid system interconnection

(e.g., all engines must receive fuel from injectors, but no more than one for each engine;

filter connected to a pump must be connected to an injector). The last pattern is a balance

constraint, which ensures the sufficient fuel storage in the system.

While the provided specification is incomplete for the sake of demonstration, the rest of the

requirements can be written down by the designer in the same intuitive way. On the whole,

the number of rows (100-200) in the final specification file is very small compared to the input

file generated for the CPLEX solver, which amounts to several thousands of rows, including

constraints and variable declarations, even for such a small design example.

4.4.2 Solving the Exploration Problem

Having created the input files (library, specification and, possibly, the SVG floor plan for a

wireless network problem), user can provide their filenames to ARCHEX as arguments:

ArchEx(problem_type, library_file, problem_file)

where the first argument is the problem type (string), so that the tool can create the instance

of the specific problem (e.g., FMS). This script automatically includes all necessary folders to

the MATLAB path, creates an instance of a corresponding problem and solves it, i.e., makes all

steps of both the formulation and the solving execution flows shown on Figure 4.2. During the

execution, ARCHEX does some console prints, which allows the user to see what it is currently

doing. When the optimization is finished, the generated architecture graph is shown and

solution is saved to disk. Some results are also printed to the MATLAB console, for example,

formulation time, solving time, results of the analysis. If the formulation is not feasible, i.e.,

there are contradictions in the constraints or no satisfying architecture can be found, then

Unfeasible will appear in the console and no graph will be shown.

An example of the visualization is shown on Figure 4.7: nodes of different types have different

colors (more advanced coloring schemes highlighting different subtypes are also available). It

is also possible to hide the nodes that are not instantiated, e.g., P3, F2 and I2 on Figure 4.7. User

can check out the mapping of the components by double clicking on the corresponding nodes

of the graph: information about a library element that implements the “virtual” component

will be shown in a small window. Default graph layout sorts the nodes by component type,

while other layouts are also available for specific problems, for example, for wireless networks.

Debug Mode. If the control script is called without arguments, then the tool is launched in

debug mode, i.e., the problem is not automatically solved, but only formulated, so the user
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Figure 4.7 – Visualization of the solution (architecture graph) in ARCHEX.

can check it before running the solver. The created Problem object (called prob) is stored in

the MATLAB workspace, so it is possible to explore its contents (public properties) and call

its methods to manually control the toolbox, e.g., redefine the constraints or the objective

function, select the algorithm for solving the problem, adjust the settings of the solver, call the

solver, run the analysis of the architecture, visualize or save the results.

One of the debugging methods available in ARCHEX is pushing constraints (patterns) one by

one to the formulation. That is, if the problem is infeasible, the user can run ARCHEX in the

debug mode and start with a simpler formulation, which has a feasible solution, and then

incrementally add the constraints to find out which one brings the infeasibility. In such a

way, errors in the specification, that cause the optimization to fail, can be quickly identified.

Following method is provided by the Problem class:

prob.addConstraint(pattern);

The method automatically parses the pattern declaration, provided as argument, and creates

the corresponding MILP constraints and the required infrastructure (e.g., auxiliary variables).

Same method is used by learning functions in the “lazy” optimization approach to incremen-

tally augment the specification with new proposed constraints. ARCHEX currently does not

provide the Pop() interface, which would allow for taking out recently added constraints

and backtracking, because, unlike SAT problems, adding new constraints typically affects the

whole formulation, i.e., many existing references are redefined. Investigation of backtracking

capabilities requires additional studies in future works.
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User can also query the whole categories of constraints (e.g., balance or timing) to the formu-

lation. As discussed in Section 4.3.1, this is possible by calling the ConstraintHandler class:

prob.ConstraintHandler.getConstraintsMILP(Timing);

As a result of the command above, the whole set of timing constraints (if any) from the

specification will be added to the formulation. In such a way, it’s easy to manipulate the

viewpoints used in the current exploration problem. If the newly added set of constraints is

independent from the current formulation (no dependencies or variable references have to

be updated), then it is simply added to the list of problem constraints. Otherwise, existing

formulation is fully redefined, i.e., existing constraints are also regenerated to obtain a valid

monolithic formulation. This can also be done manually:

prob.defineConstraints();

We note that the template, library, mapping and existing basis constraints are not affected by

this command. Therefore, redefining constraints can be much less time consuming compared

to fully recreating the problem instance.

Users can also quickly switch between different objectives:

prob.setObjective(weight);

which allows users to run optimizations for different objectives within the scope of the same

formulation.

The solving technique can be selected simply as

prob.setAlgorithm();

with “eager” or “lazy” as argument. Depending on a particular problem, iterative approach

may or may not be implemented, while monolithic optimization is always the default one. For

the problems that include path variables yπ and wπ in the basis, one can also choose between

full path enumeration and approximate path encoding (we omit the code examples).

The solver can be invoked by the following command:

prob.solve(options);

where theoptions parameter specifies the settings for the solver, which are further explained

in Section 4.4.3. In turn, analysis used in the given problem can be started by typing

prob.Analysis.run();

When the analysis is finished, results are printed to the console and stored in the workspace.
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4.4.3 Additional Functionalities

In this section we briefly outline the additional important functionalities of ARCHEX, such as

visualization, saving and configuring the solver.

User can draw the graph of the current solution with the following method:

graph = prob.showResult();

The graph will be drawn in a separate window as shown on Figure 4.7, while the graph object

will be stored in the corresponding field of the MATLAB workspace. Finally, user can save this

graph object as well as inputs and outputs of the exploration problem with

prob.Save();

This method of the Problem class saves the architecture graph as a .png image, while the

specification data (types, flows, number of components, etc) and solution (assignments to

decision variables) are saved to a .mat file. Furthermore, the input file with MILP formulation

for the solver (currently, CPLEX) is saved to a separate text file.

ARCHEX also provides few additional functions for visualization:

graph = prob.showTemplate();

prob.showCoverage(nodes);

prob.showObstacles();

prob.showPoints(point_set);

The first method visualizes the architecture template, i.e., the input of the exploration problem.

The graph shows all possible connections between nodes (an example can be seen on Fig-

ure 2.1), so that the user can verify if the composition rules have been correctly specified.

Furthermore, he/she can get more understanding on the system structure, which may help

in writing down the requirements. Next three methods are currently implemented for the

wireless extension of ARCHEX. First one draws the coverage map of the network deployment,

which is either estimated (if it is drawn for the template) or actual (if the problem is already

solved and the topology has been generated). showObstacles() is used to visualize the

floor plan on top of the topology graph, while the last method is used to draw the evaluation

points used in localization constraints.

Solver Options. Certain parameters of the MILP solver can be configured by the user, for

instance, optimality gap, timeout, verbose level, etc. Configuring them is useful for certain

experiments and designs. For example, for debugging one might want to set the amount of

displayed information to maximum. For testing it may be necessary to set a timeout to make
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the solver terminate at a certain moment, e.g., to see if it is able to find any feasible solution

within a predefined time.

Furthermore, it is sometimes useful to adjust the optimization gap, i.e., the distance between

the current value of the objective function and the best achievable one, as estimated by the

branch and cut algorithm. This allows the solver to terminate once a near-optimal solution

is found. MILP problems are NP-hard, so it is unknown, how long it takes to find the final

solution, i.e., to explore the whole design space. However, a typical case happens when a very

good solution (e.g., with a 10% gap from the optimum) is rapidly found, and then the structure

of the problem does not allow the solver to prove the optimality for a long time (e.g., hours).

That is, the rate of change of the optimization gap significantly decreases, and the solver

progresses towards the optimal solution very slowly. In such situations, the optimization can

be terminated with a near-optimal solution, which is still much better than the first found

feasible configuration.

In the current version of ARCHEX, interfacing with different MILP solvers is done by the

YALMIP [76] toolbox. In particular, the solve(options) method of the Problem class,

mentioned in previous section, calls one of the solving algorithms (eager or lazy). In turn,

these algorithms internally call theoptimize(cons,cost,options) function of YALMIP.

Here, options is a dedicated structure of type sdpsettings provided by YALMIP, which

stores the configurations of different solvers. It allows the user to flexibly tune the desired

parameters. Following code snippet illustrates an example of useful settings of ‘the CPLEX

solver:

% create solver options structure via YALMIP command

options = sdpsettings;

% select IBM CPLEX as the solver

options.solver = ’cplex’;

options.cplex.threads = 1;

options.cplex.mip.tolerances.mipgap = 0.005;

options.cplex.timelimit = 43200; % 12h

options.savesolverinput = 1;

options.savesolveroutput = 1;

% maximum verbose

options.debug = 1;

options.verbose = 2;

options.showprogress = 1;

options.saveduals = 0;

First, the options structure is initialized and CPLEX is chosen as a solver. CPLEX is then

configured not to use parallelization by setting the maximum number of allowed threads to
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one. This is sometimes useful, because parallel exploration of different subtrees by the branch

and cut algorithm may come with a very high time cost of synchronizing the threads. In our

experience and in the scope ARCHEX, single-core optimizations typically completed much

faster. Thread limitation is followed by specifying the optimization gap and the timeout, i.e.,

the solver will terminate once reaching the 0.5% gap or by the 12h timeout. Next group of

parameters force CPLEX to save both its input and output and store them in the workspace

of MATLAB. The last group deals with the verbose settings of CPLEX, i.e., how detailed is the

information about the optimization progress printed to the console.

Once the options object is configured, it is passed to the solver. The solve() method can

be also called without arguments for the default set of settings to be applied. ARCHEX stores

some predefined setups for CPLEX in the Settings class (see the diagram on Figure 4.4). For

quickly creating the options, the user can, for example, type

options = Settings.cplex_options(’eager’);

which will automatically create the sdpsettings object and initialize it with default solver

parameters for the monolithic optimization. It is possible to add customized configurations

for different solvers to the Settings class.

More details and instructions are available in the public repository [1], while we refer the

reader to the manuals of particular solvers for more information on their calibration and usage.

In the following two chapters we demonstrate the efficiency and the scalability of ARCHEX and

the proposed exploration methodology by running numerical evaluations on several industrial

case studies.
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This chapter deals with CPS applications from two different industrial domains, both of them

having reliability as a major design concern. We use them to evaluate the efficiency and the

scalability of the proposed architecture exploration methodology and the developed framework

( ARCHEX). The first application is the electrical power distribution network of a passenger

aircraft, in which a set of electrical loads have to stay powered from a set of generators even

if some of the components fail. That is, along with interconnection, balance and timing con-

straints, the functional links of the system are subject to tight reliability requirements. The

second application, a reconfigurable manufacturing system, also has a bound on the failure

probability of its production lines, while timing and workload constraints have to be satisfied,

and different operation modes need to be supported. ARCHEX is able to capture the heteroge-

neous requirements of these systems in short pattern-based specifications, which demonstrates

both the expressiveness of the methodology and the usability of the framework. We further

evaluate the two algorithms for solving exploration problems, monolithic and iterative, dis-

cussed earlier in this thesis. Despite having different complexity of the formulation, execution

time and optimality guarantees, both of them are able to synthesize reliable cost-effective CPS

architectures in reasonable time, proving the scalability of our approach.

5.1 Aircraft Electrical Power Distribution Network

5.1.1 Overview and Problem Statement

We first apply our approach to the avionics case study from [12, 99]. The number of electronic

components installed on modern aircrafts has increased over the past years, which makes

the design of safety-critical subsystems challenging. Along with the fuel management system,

introduced in Section 4.4, an aircraft Electrical Power distribution Network (EPN), such as the

one in Figure 5.1a, is a notable example. As an aircraft becomes increasingly more electric

(i.e., hydraulic and pneumatic systems are replaced with electric systems), the power system

becomes increasingly critical for safe operation.

A sample EPN architecture is shown on Figure 5.1b in the form of a single-line diagram,

which was previously introduced in [99], together with the overall system description, and
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(a) (b)

Figure 5.1 – (a) Power distribution of Boeing 787 (source: www.boeing.com); (b) Simplified
diagram of an EPN adapted from a Honeywell patent [99].

a qualitative discussion of the main design requirements. EPNs typically consist of power

generation, primary distribution and secondary distribution subsystems. To demonstrate our

methodology, we focus on the primary power distribution subsystem. Here, power is delivered

from a set of sources (engines and batteries) to a set of sinks (electrical loads) via AC and

DC buses. The system is divided into left and right parts, but the corresponding generators

(L/R-GEN) and auxiliary power units (APUs) can power both parts. Components can be further

classified as high voltage (HV) and low voltage (LV). Rectifier units (RU) are used to convert

AC power to DC power, while HV levels can be converted into LV levels using a transformer-

rectifier unit (TRU). Several buses are essential (ESS) meaning that they must be present in

the architecture. Sensors monitor the health state of generators and buses and inform the

controller, which actuates a set of switches (contactors) to keep critical loads powered even if

the components fail.

Primary electric loads (not shown on Figure 5.1b) include communication and computing

systems, electrically-driven actuation systems (including electro-hydraulic systems), anti-ice

and/or de-ice systems, and lighting systems. DC loads can also be powered by batteries (Batt)

in case of emergency or while on the ground, when the engines are shut down. We further

note that some of the loads, e.g., avionics components, hydraulics, fuel boost pump and

window heating, are non-sheddable (essential, critical), i.e., they must remain powered in any

circumstances. In contrast, other loads, such as ice protection unit, heating and lighting, are

sheddable, i.e., they can be dropped if power supplies are insufficient.

Requirements. Our methodology deals with the exploration of the architectural space. There-

fore, we are interested in the part of EPN requirements that are related to the system archi-
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tecture, i.e., to components and their interconnections, and neglect the ones related to the

controller. In particular, safety requirements constrain the way each bus must be powered to

avoid the loss of essential features. In this context, for example, AC power sources must not be

parallelized, i.e., simultaneously connected to the same AC bus. Similarly, every TRU can serve

a single bus. Furthermore, the power in nominal conditions must be balanced, i.e., total load

must be within the capacity of the generators, while each bus must be capable of powering all

the loads which are connected to it. We refer the reader to [99] for a more detailed list of safety

requirements. Overall, in ARCHEX all of them can be captured by interconnection and balance

constraints as we demonstrate in the next section.

EPN reliability requirements prescribe that the system must be designed to be safe up to

certain amount of operation time. Each component of the system has a failure probability,

therefore, the system must be capable of tolerating any combination of component faults

that has a joint probability more than a given threshold. We capture such requirements with

reliability constraints discussed in Section 3.2.4. The latter use an encoding based on the

approximate reliability algebra proposed by P. Nuzzo in [96], that replaces the full enumeration

of system failure events with a set of linear constraints, which capture the system reliability

with a small bounded error. Alternatively, the iterative optimization technique proposed

in [12] and generalized in Algorithm 2 can be applied, as shown in Section 5.1.3.

Performance requirements impose certain priorities on the connections of the system, for

example, requiring particular buses to be powered only from left/right generators or APUs.

Furthermore, some components ought to provide certain guarantees, such as valid power

levels for generators, bounds on opening/closing time of individual contactors and so on. Such

requirements in our methodology are modeled by interconnection constraints in combination

with valid mapping decisions.

Some safety and performance requirements are imposed on the controller synthesis problem,

which is currently out of scope of our methodology. It is important to note, however, that, as

shown in [99], design requirements can be partitioned in a way that an EPN can be designed in

a compositional fashion, i.e., architecture exploration and controller synthesis methodologies

can be deployed independently. In the framework of design contracts the authors prove that if

the architecture and the controller satisfy their contracts, the controlled system will also be

correct and will satisfy the system-level requirements [99].

Exploration Problem Statement. The goal of the exploration problem is to select the topology

and the components of an EPN that satisfy a set of interconnection, balance (power flow),

safety and reliability requirements, while minimizing the total component cost and the num-

ber of contactors. During optimization, a tradeoff between redundancy and system cost is

explored, while the synthesized architecture serves as a specification (assumption) for the

subsequent controller design step.
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5.1.2 Specification

We apply ARCHEX to solve the exploration problem for EPN. As a first step, we create a library L

with components of the following types: generators (G), contactors (C), AC buses (A), rectifiers

(R), DC buses (D), and loads (L). Each component is labeled with cost c, subtype s, and

failure probability p. Common subtypes are HV and LV , while generators and rectifiers have

extra subtypes, APU and T RU , respectively. Generators, buses, and loads are labeled with

power ratings g, power capacities b, and power requirements l, respectively. Contactors are

modeled with edges. We further assume that contactors and loads have no failures, the other

components fail with probability 2×10−4, and contactors have a fixed cost.

Next, we create a problem description file, starting with the definition of the template T. As

discussed in Chapter 2, T is a directed graph, where each node represents a component and

each edge represents an interconnection (contactor). An edge is directed from node vi to

node v j if v j receives power by (or through) vi when traversing the graph from a load to a

generator. The following components are parts of the template: generators (LG/RG/MG), AC

buses (LB/RB), rectifiers/TRUs (LR/RR), DC buses (LD/RD), loads (LL/RL). Here, prefixes L,

R and M are tags that group components based on their location, i.e. left, right and middle.

The middle part is used only for generators: MG components represent APUs that can be

connected to both left and right AC buses. The template is characterized by the maximum

number of components to be used on each side, while their exact amount is decided during

optimization, except for the loads, which are fixed.

As the power is delivered from generators to loads via a network of buses, we set the functional

flow to F = (G,B,R,D,L), i.e., every source-sink path within a functional link must have at least

one component of each type T ∈F and the order has to be preserved. Composition rules define

legal interconnections between components according to F and to their location. For example,

LG can be connected to LB, but not to LR and not to RB. Buses can be connected together (e.g.,

LD to LD, and also LD to RD, thus allowing us to connect left and right parts). The objective

function of the EPN problem is the sum of the costs of all components (associated with nodes)

and contactors (associated with edges) used in the electrical power network architecture,

which can be encoded as in (2.7).

The summary of both T and L is given in Table 5.1. With a few simplifications (e.g., there are

no components that represent batteries), T reflects the structure and the scale of a realistic

EPN topology from Figure 5.1b based on a Honeywell patent [99], which is close to the archi-

tecture of a power system of a Boeing Dreamliner. The total number of contactors, 103, is an

approximate number based on the total possible amount of edges in the architecture graph,

which is n ×n, n being the total number of components in T (n = 48), and on the assumption

that more than half of these edges are restricted by the composition rules.

We then specify the requirements using patterns. In particular, for interconnection properties

we use the at_most_N_connections(T1,T2,N) pattern to limit the number of allowed direct

connections from every component of type T1 to components of type T2 to N. Using two
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instances of this pattern, we can prescribe that any rectifier that is used cannot be directly

connected to more than one AC bus and more than one DC bus by using (R,B,1) and (R,D,1), re-

spectively, as arguments. Internally, the pattern creates the MILP constraints of the form (3.2a),

which can be written as follows:

nacb∑
i=1

M br
i , j ≤ 1,

ndcb∑
i=1

M r d
j ,i ≤ 1, ∀ j ∈N : 1 ≤ j ≤ nr ec ,

where M br and M r d are connectivity submatrices (subsets of the adjacency matrix of T) that

correspond to edges from, respectively, AC to rectifiers, and from rectifiers to DC buses, while

nacb , nr ec and ndcb are the amounts of AC bus, rectifier and DC bus components in T.

Furthermore, we can enforce “if-then” relationships for graph edges based on expressions (3.3a)-

(3.3b) using patterns, such as out_conn_implies_in_conn(T,Tout,Tin): if a component of

type T has an outgoing connection to one of components of type Tout then it must have an

incoming connection from Tin. For example, we can require that all TRUs that are connected

to a DC bus must be connected to at least one AC bus, i.e., ∀ j ∈N : 1 ≤ j ≤ nr ec ,

nacb∨
i=1

M br
i , j ≥

ndcb∨
i=1

M r d
j ,i .

Similarly we can enforce that all DC buses that are connected to a load or another DC bus

must be connected to at least one rectifier to receive power from an AC bus and that all AC

buses that are connected to a TRU or another AC bus must be connected to one generator.

The bidirectional_connection(B,B) pattern prescribes that contactors between two AC

buses provide the power flow in both directions (the actual direction depends on the current

system dynamic state) and, therefore, such “horizontal” connections must be represented by

two oppositely directed edges. Similar constraint applies to DC buses. Finally, the pattern

cannot_connect(G,HV,B,LV) is used to restrict direct connections between HV generators and

LVAC buses (in our system the only legal connection between HV and LV is HVAC bus to LVDC

bus via a TRU). Instances of aforementioned patterns are also applied to other component

types (the full specification is omitted for brevity).

Furthermore, we use the at_least_N_components pattern to fix certain components in the

architecture. For example, all 16 loads specified in T must be instantiated. Also, on the power

source side, there must be HV and LV generators, i.e., aircraft engines, on both left and right

parts, and there must be at least one APU. Moreover, each part must have at least one TRU.

With balance constraints we prescribe that the total power provided by the generators in

each operating condition is greater than or equal to the total power required by the con-

nected loads. For instance, in normal operating conditions, the power generated on each

side should be greater than or equal to the total power required by the loads on that side. On

the other hand, when only the APU is active, then it should be capable of powering at least

the critical loads on both sides of the system. We have implemented and applied the pattern
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Table 5.1 – Summary of template T and library L for the aircraft electrical power distribution
network example. Notation {a. . . b} indicates that all values are within the interval between a
and b.

Type Number in T Cost, Fail prob. g,b,l (kW)

(Left,Right) ×102 HV LV

Generator 2,2 + 2 APU g 2×10−4 60,70,80,150 15,20,30

AC bus 4,4 20,30 2×10−4 100,150 30

RU / TRU 5,5 20,30 2×10−4 - -

DC bus 4,4 20 2×10−4 30 5

Load 8,8 0 0 {7. . . 20} {1. . . 5}

Contactor ∼ 103 (total) 10 0 - -

has_sufficient_power(T1,T2), which is a domain-specific version of the generic balance

pattern from Table 4.1, to enforce aforementioned constraints by specifying power sources (G)

and sinks (L) as, respectively, T1 and T2. Similarly, we express the requirement for DC buses:

each of them must be capable powering all loads connected to it, i.e., have sufficient capacity.

Finally, a reliability constraint prescribes that the probability that a load gets unpowered

because of failures should be less than a desired threshold. Some of the loads in our system are

sheddable and the corresponding functional links must have a maximum failure probability

of 10−5, while other, non-sheddable loads, have a tighter requirement and have to fail with a

probability of at most 10−9. We use the pattern max_failprob_of_connection(L,G,val) to

limit the maximum failure probability of functional links between loads (L) and generators

(G) to val. It leverages the approximate encoding of reliability constraints, as discussed in

Section 3.2.4.

Requirement patterns hide the details of the MILP formulation, which can be massive. Our

specification for the EPN architecture exploration problem consists of only 46 instances of

patterns and a total of 90 lines of code, including variable declarations and composition rules.

The automatically generated MILP formulation for the monolithic optimization in standard

form amounts to more than 100,000 constraints and 20,000 variables. The encoding for

every iteration of the “lazy” optimization technique has around 5,000 constraints and 1,500

variables. Both resulting formulations are orders of magnitude larger than our specification.

Moreover, these huge lists of linear inequalities are extremely complex to understand, refine

and debug. This clearly shows the advantage of raising the level of abstraction of design

capture using patterns.

5.1.3 Iterative Optimization: MILP Modulo Reliability

The MILP Modulo Reliability (MILP-MR) algorithm [12, 96] avoids the expensive generation

of symbolic reliability constraints by adapting the MILP Modulo Theory approach [80] to

reliability computations. This is done by applying Algorithm 2, i.e., generic iterative optimiza-
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tion scheme, to the reliability design viewpoint. A smaller MILP problem, without reliability

constraints, is solved in a loop with an exact reliability analysis routine. The set of application

constraints RA includes only interconnection and balance constraints, for which SOLVEMILP

generates minimum cost architectures. The analysis routine (calls to the RUNANALYSIS func-

tion in Algorithm 2) then computes the probability of composite failure events at critical nodes,

starting from the failure probabilities of the components, a problem known as K -terminal

reliability problem in the literature [77]. To do so, we apply a modified depth-first search

algorithm from [99]. It traverses the graph G from the sink node i (root) to the source nodes

(leaves), by applying a path enumeration method, and by turning failure event relations into

probability expressions. Although the K -terminal reliability problem is NP-hard, the key idea

is to solve it only when needed, i.e., a small number of times, and possibly on smaller graph

instances. The complexity of solving a MILP is also NP-hard. However, the actual runtime

depends on the size of the MILP at each iteration, which is smaller than the one solved with

the monolithic optimization scheme.

At each iteration of MILP-MR, if the obtained architecture satisfies the reliability constraints, it

is returned as the final solution. The result is, in general, sub-optimal with respect to overall

constraint set but the satisfaction of the reliability constraints is guaranteed by the exact

reliability analysis. If the candidate architecture does not satisfy the reliability constraints,

LEARNCONS (line 10 in Algorithm 2) estimates the number of redundant paths needed to

achieve the desired reliability and suggests a set of strategies to implement the required paths

by augmenting the original optimization problem with a set of interconnection constraints.

Such strategies are subsequently deployed until the target failure probability is reached or no

other strategies are available. This constraint learning function is, therefore, instrumental to

efficiently converge towards a reliable architecture, while minimizing the number of calls to

the analysis routine. We provide details about the implementation of LEARNCONS later in this

section.

When no reliability constraints are enforced in the MILP, the solver attempts to use the mini-

mum number of components and interconnections to perform a specific function at minimum

cost. Typically, such a “minimal” architecture has also minimal redundancy, hence minimal

reliability. Based on this intuition, we develop strategies that increase the reliability of the

solution, albeit at a higher cost, by enforcing a larger number of redundant components and

interconnections.

One of the strategies is summarized in Algorithm 3. It separately analyzes functional links

for every sink (load) s ∈ S and, if required, generates additional constraints that force the

optimizer to add new components or connections in order to improve the reliability of the

link (lines 4-16). Before doing this, FIXMAPPING (line 3) determines the components that

are already used in the current version of the architecture (by looking at the mapping matrix

m∗) and constrains them to be instantiated with the same mapping on subsequent iterations.

This is done for preserving the non-decreasing quality of subsequent solutions in terms of

reliability. Next steps of Algorithm 3 enforce, in particular, new connections for components
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Algorithm 3: LEARNCONS

Input: Current constraints Cons, reliability r , reliability requirement r∗, adjacency matrix e∗,
mapping matrix m∗, functional flow F

Output: Final constraints Cons
1 NewCons ← [ ]
2 S ← GETSINKS(e∗)
3 FIXMAPPING(m∗)
4 forall s ∈ S do
5 k ← ESTPATH(r (s),r∗(s),e∗)
6 if k ≥ 1 then
7 forall T ∈F \ {Tsi nk } do
8 AddedPaths ← 0
9 (AddedPaths, NewCons) ← CONNECTEXISTING(s, T , k, NewCons, e∗)

10 δ← k − AddedPaths
11 if δ> 0 then
12 NewCons ← ADDCOMPONENT(T , δ, NewCons, m∗)
13 (AddedPaths, NewCons) ← CONNECTNEW(s, T , δ, NewCons, e∗)
14 else
15 Tmi n ← FINDMINREDTYPE(s, e∗)
16 NewCons ← FINETUNE(s, Tmi n , NewCons, e∗, m∗)
17 if NewCons = [ ] then
18 return Infeasible
19 Cons ←Cons ∪NewCons
20 return Cons

that are already instantiated. Without “freezing” the mapping, for the sake of minimizing the

cost, the solver may decide to select a different subset of the components of the template

T and, still being valid in the recently learned constraints, provide a less expensive, but less

reliable topology. This contradicts with our goal of incrementally improving the solution.

The learning starts with the ESTPATH routine (line 5) that estimates the number of paths

between the current sink (load) and the sources (generators) required to satisfy the reliability

requirement, as shown in [12]. If one or more paths are needed, i.e., k ≥ 1, then the strategy

tries to make several improvements for every component type of the functional flow starting

from the one closest to the sink (except the sink type itself). In particular, it first checks if

the improvement can be made by adding additional contactors (edges), which has smaller

cost with respect to adding new components. This can be done, for example, for DC buses,

because they can be connected together. That is, function CONNECTEXISTING (line 9), by

using the information from the current assignment on the variables of the adjacency matrix

e∗, determines the DC bus that is connected to the currently investigated sink. It then adds

constraints that force additional connections between this DC bus and other instantiated

buses. In our formulation, system organization and valid paths are ensured by defining

interconnection constraints. That is, every instantiated (used) component of the architecture

belongs to at least one path of at least one functional link. Then, by requiring to connect n

existing components together, we can ensure that all functional links related to components

being connected will have at least n −1 additional paths. In other words, n −1 extra paths will

be implicitly enforced.
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The variable δ (line 10) is calculated as a difference between k required extra paths and the

number of paths added by connecting existing components, δ> 0 meaning that the latter is not

enough to meet the requirements. This can happen either if the requirement r∗ is very strict

or if components of current type T cannot be connected together by composition rules (e.g.,

rectifiers). In both cases, extra components of type T (up to δ) are added to the architecture

(line 12). The assumption made in our learning strategies is that adding a new component

will implicitly make it a member of some functional link, i.e., some path, as prescribed by the

“if-then” interconnection constraints. Therefore, every new component will be automatically

connected to some preceding and some succeeding component in F. Moreover, the function

also tries to connect newly added nodes to existing ones if this is allowed (line 13), which will

ensure that the new path is accessible by the current functional link.

It may happen that ESTPATH returns k = 0, i.e., no more additional paths are needed or no

more paths can be added due to architecture limitations to comply with the requirement r∗,

as estimated by the function. However, r∗ is still not satisfied, because LEARNCONS has been

called. In this case, Algorithm 3 attempts to fine tune the architecture. It determines the type

Tmi n of components, which has the minimal redundancy (line 15) and tries to increase the

latter by either adding new components of Tmi n or new connections between them (line 16).

For example, if the maximum number of components in the EPN is already used and all the

paths are connected together via contactors between DC buses, it is still possible to add extra

contactors between AC buses to improve the reliability. If no new constraints are generated,

i.e., no more paths can be added, Algorithm 3 returns Infeasible.

Let Π be the partition of the template T, a and b being the components of types Ta and Tb

belonging to, respectively, sets Πa and Πb of Π. Formally, following constraints prescribe

adding extra components and connections to the architecture:

|Πa |∑
j=1

(|La |∨
i=1

ma
i j

)
≥ k +

|Πa |∑
j=1

(|La |∨
i=1

ma∗
i j

)
, (5.1a)

∑
b∈Πb

ea,b ≥ k + ∑
b∈Πb

e∗a,b , (5.1b)

where e and e∗ are adjacency matrices for, respectively, template T and current architecture

G∗, same apllies for mapping matrices ma and ma∗ for components of type Ta , and La is the

subset of elements of the library L having type Ta . Constraint (5.1a) enforces k additional

components of type Ta in the architecture by manipulating the mapping in a way that k more

components are required to be mapped, i.e., to be instantiated. Constraint (5.1b) adds k

extra connections from component a ∈Πa to components of type Tb fromΠb , which can be

applied also for “horizontal” connections. One can use (5.1b) both for connecting existing

components and enforcing additonal connections between new components, which implicitly

forces the solver to add the components.

In a more general form, one can explicitly require k additional paths between the sink l and

components of type Ti , belonging to the set Πi , of the partition Π of T with the following
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constraint:∑
w∈Πi

ηw,l ≥ k + ∑
w∈Πi

η∗w,l , (5.2)

where η and η∗ are the walk indicator matrices for, respectively, template T and current archi-

tecture G∗. Moreover, the structure of the walk indicator matrix allows us to request new paths

with a bound on the number of hops (edges) [96]. Despite the generality, using constraints of

the form (5.2) may be expensive. Defining a walk indicator matrix and associating its variables

with the basis variables requires a large number of auxiliary MILP constraints and variables,

as discussed in [96]. Alternatively, if it is admitted by the composition rules, we can simply

require adding new components and direct connections (edges), thus operating only on basis

variables. With respect to the LEARNCONS algorithm presented in [12], we only replace the

ADDPATH function that implements Constraint (5.2) with a set of actions for adding compo-

nents and connections, as formalized by Constraints (5.1a)-(5.1b). These actions support our

extended formulation (e.g., with respect to previous works we employ component subtypes in

the architecture), and, same as in [12], ensure a nondecreasing sequence of system costs on

subsequent iterations, because every time either nodes and edges are added or Infeasible

is returned. Added components and connections will induce additional paths that help to

satisfy the reliability requirement. Since the size of T is finite, eventually the iterative optimiza-

tion (Algorithm 2 instantiated as MILP-MR) will terminate. Hence, our modifications do not

violate the soundness and completeness of MILP-MR stated by the corresponding theorem

in [12].

Finally, we note that at every iteration of Algorithm 3 some actions are taken for every com-

ponent type in F. That is, multiple components and connections can be added in the next

generated architecture. On the one hand, this allows the algorithm to faster converge to a

satisfying solution in terms of reliability requirement. However, resulting architecture may be

over-designed, e.g., when too many new connections have been added, while r∗ can be satis-

fied by only using a part of them. Therefore, LEARNCONS can also implement a lazier strategy,

which adds a single constraint at every iteration and makes it possible to more carefully tune

the architecture and to avoid over-design. Such approach, however, might have much more

iterations, which affects the execution time. It can be applied, for instance, when minimizing

the objective is a high priority goal.

5.1.4 Numerical Evaluation

We evaluate both monolithic and iterative (MILP-MR) optimization techniques provided by

ARCHEX by synthesizing complex EPN architectures based on the specification provided in

Section 5.1.2. All the numerical experiments reported below have been performed on an Intel

Core i7 3.4-GHz processor with 8-GB RAM running Ubuntu 16.04.

By using the monolithic optimization approach, ARCHEX generates the EPN topology shown

on Figure 5.2a in about 2.5 h. In this architecture, only horizontal connections between DC
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LG1 LG2 MG1 RG1 RG2

LA1 LA3 LA4 RA1 RA2 RA4

LR1 LR3 LR4 RR1 RR3 RR5
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LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8 RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8
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(a)

(b) (c)

(d)

Figure 5.2 – EPN architectures generated by ARCHEX (a) Monolithic optimization: r = 0.5×10−9,
r̃ = 0.96×10−10; (b) First iteration of MILP-MR: r = (0.6,0.8)×10−3 for (HV,LV) loads; (c) Second
iteration of MILP-MR: r = (0.2,0.32)×10−6 for (HV,LV) loads; (d) Third (last) iteration of MILP-
MR: r = (0.38,0.19)×10−9 for (HV,LV) loads.

buses are added to increase the system reliability, while AC buses are not connected. Green and

yellow nodes of the graph represent HV and LV components, respectively. Red components

are TRUs connecting the HV and LV portions of the system (can also be used to connect buses

with the same voltage level). Unused nodes are not shown. Horizontal connections between

DC buses increase the system reliability, by creating redundant paths from loads on one side of

the system to sources on the other side or APUs. The resulting failure probability is 0.5×10−9

for every functional link and the overall cost is 106,000. The approximate algebra provides an

estimation r̃ = 0.96×10−10 of the failure probability which is smaller than the value obtained

by exact computation, but it is well within the error bound introduced in [96]. Furthermore,

both exact and approximate values satisfy the reliablity requirement.

By using the iterative approach (MILP-MR), the problem is solved in 3 iterations as summarized

in Fig. 5.2b-5.2d. By solving for just the interconnection and power flow constraints, we obtain

the simplest possible architecture (Fig. 5.2b), which only provides a single path from every

load to a generator (or APU), thus showing the highest failure probability. Because increasing

the number of components is expensive, the algorithm first tries to increase the reliability by

adding connections among existing components at the cost of additional contactors. As shown

in Figure 5.2c, contactors are added between existing AC and DC buses (shown as horizontal

connections) thus allowing the generators on the left side to be accessible by the loads on the

right side (and vice versa). Rules of connecting different subtypes are preserved: HVDC bus is

connected to another HVDC, same for the low voltage buses. Since the requirement is not yet

satisfied, a third iteration is used, and two extra DC buses are added, one HV and one LV for

each type, as well as two extra HVAC buses, and connected to existing buses (Figure 5.2d). The
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resulting failure probabilities are (0.38,0.19)×10−9 for the (HV, LV) functional links. The cost

is 108,000, slightly higher than the one obtained with eager optimization, for a total execution

time of 56 s, of which 98% are used for the problem formulation.

5.1.5 Scalability

We also tested the performance of ARCHEX 2.0 on the benchmarks used in [12] by designing

EPN architectures with an increasing number of components. In Table 5.2, we report on

the execution time of the MILP-MR iterative technique based on Algorithm 2 and using the

learning function LEARNCONS as in Algorithm 3. Results for the eager optimization are re-

ported in Table 5.3. Clearly, the iterative approach outperforms the eager one for architectures

with more than 20 nodes. On the other hand, once the optimization problem is generated

for a given template, monolithic optimization is competitive for smaller architectures. Yet,

problems with several tens of thousands of constraints, and including a realistic number of

generators (normally less than 10), can still be formulated and solved in a few hours.

We can also point out that the complexity of the monolithic optimization (in terms of MILP

consraints and decision variables) grows much faster with the size of T, compared to the

iterative one. This is because the latter only uses interconnection and balance constraints in

the formulation, which are simple and only use the basis variables, possibly with few auxiliary

ones for linearizing some terms in the expressions. Conversely, the approximate encoding of

reliability constraints used in the eager approach additionally uses walk indicator matrices.

The formulation of these auxiliary data structures involves computing powers of the adjacency

matrix according to the definition from [12]. The latter consists of binary decision variables and

every their product has to be replaced with a new variable and a set of linearization constraints.

Their number grows rapidly when increasing the size of T. Therefore, the biggest overhead in

the complexity of the formulation comes with reliability constraints, while decoupling them

allows obtaining much simpler formulations and solve them iteratively, as done by MILP-MR.

We also note that the longest execution time for MILP-MR in Table 5.2 (12 s) is several times

smaller compared to the one reported in Section 5.1.4 (56 s). This is because interconnection

constraints related to separation of HV and LV parts of the architecture were not used in the

scalability tests. In the case studies in Section 5.1.4 they introduced additional timing overhead

both for setting up the formulation and for the learning function.

We also ran a set of experiments with both solving techniques on a template of a fixed size

while varying the size of the library L. Results for both eager and lazy algorithms are shown in

Table 5.4. They confirm our discussion in Section 2.2.1: the number of mapping variables (not

shown in Table 5.4) grow linearly with |L|. At the same time, the growth trend of the overall

problem complexity (both variables and constraints) is logarithmic in |L|. Same results have

been observed for larger |T|, which confirms the efficiency of the proposed separation of the

mapping problem.
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Table 5.2 – Number of MILP constraints and variables, number of iterations, reliability analysis
and solver time for different EPN architecture sizes (r∗ = 10−11) generated using integer linear
programming modulo reliability (MILP-MR) with LEARNCONS (Algorithm 3).

|T| (# Generators) #Constraints / #Vars #Iterations Analysis time (s) Solver time (s)

20 (4) 621 / 196 3 2 0.5

30 (6) 1255 / 364 3 3 1

40 (8) 2109 / 580 3 6 3

50 (10) 3183 / 844 3 11 5

60 (12) 4477 / 1156 3 12 12

Table 5.3 – Number of MILP constraints and variables, problem generation (setup) and solver
times for different EPN architecture sizes (r∗ = 10−11) generated using monolithic optimization
with approximate reliability constraints.

|T| (# Generators) #Constraints / #Vars Setup time (s) Solver time (s)

20 (4) 3677 / 1372 12 1

30 (6) 14371 / 4576 22 12

40 (8) 40701 / 11956 30 494

50 (10) 93803 / 24864 108 1219

60 (12) 187885 / 51340 253 19776

Table 5.4 – Problem complexity (number of constraints and variables) and solver time for
exploration problems with different sizes of library L and a fixed-size template T (20 nodes)
solved using monolithic and iterative optimization approaches.

|L| #Constraints / #Variables Solver time (s)
Monolithic Iterative Monolithic Iterative

10 3677 / 1372 621 / 196 1 0.5

25 3780 / 1451 724 / 275 1.2 0.5

50 3895 / 1566 839 / 390 1.3 0.5

75 3974 / 1651 922 / 482 1.6 0.6

100 4075 / 1746 1019 / 570 2 0.7

Overall, we infer that eager approach turns out to be preferable when we aim to a coarser

estimation of the capability (and limitations) of an architecture template and a platform library

in terms of reliability. Furthermore, its solutions are proven to be either optimal or within a

known gap from the optimum (this can be configured for a given MILP solver as shown in

Section 4.4.3), albeit with respect to an approximation of reliability constraints. On the other

hand, MILP-MR makes it easier to incorporate domain-specific knowledge, since a designer

can customize the techniques adopted to improve reliability at each iteration. Moreover,

MILP-MR becomes the preferred choice, especially for larger problem instances, when we can

estimate the number of redundant paths needed to satisfy the requirement as early as possible,

or when we are willing to pay for a longer execution time to incrementally fine tune the

reliability. On the whole, design projects that have tighter timescales may opt for the iterative
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technique, while the ones with a sufficient time budget and stricter need for minimizing the

objective and guaranteeing the optimality may prefer the monolithic approach.

5.2 Reconfigurable Manufacturing System

5.2.1 Overview and Problem Statement

The recent concept of “Industry 4.0” advocates the usage of CPSs in factory automation as

a major goal [88, 53, 73]. We demonstrate the effectiveness of our exploration methodology

by applying it to a related industrial case study - optimized selection of reconfigurable man-

ufacturing system (RMS) architectures. Such production systems are able to quickly adjust

their functionality to respond to sudden market demand changes or unexpected machine

failures [67, 39]. As exemplified on Figure 5.3, an RMS consists of a source that provides parts

to be processed (assembled, packaged) on the line, a set of Computer Numerical Control

(CNC) or Reconfigurable Machine Tools (RMT) connected by conveyors, and a sink that col-

lects the final product. A typical RMS can have several sub-lines to process different product

types or different parts (details) of the same family. These sub-lines are connected together

with junction conveyors or gantries [66]. Reconfiguration is, in particular, related to having

different operation modes. For instance, at some time, manufacturing of the product on line 1

is not required, while there is an increased demand for another product, processed by line 2.

Instead of installing a fully parallel sub-line for the second product, which can be costly, it is

possible to reuse (reconfigure) line 1 to increase the throughput. In this case, line 1 must use

RMTs, which accept both product types and hence support both operation modes.

The possibility of an RMS to reconfigure is also useful for reliability purposes, so that in the

event of component failure production units are rerouted to other active sub-lines in order to

be processed without stalling the whole system, because the latter may lead to severe financial

losses. This is similar to switching the contactors in the previous case study (EPN) in order to

keep active the functional links between product sources and sinks. In other words, if there is

a number of additional paths (sub-lines) for processing production units (for each product

type) then the reliability of the RMS is increased.

Requirements. The design of RMS suggests a number of different concerns. From the struc-

tural viewpoint, a particular set of manufacturing devices (e.g., product sources, sinks/col-

lection stations, certain types/subtypes of machinery) and interconnections between them

must be present in the system architecture. Moving of production units (details, parts) along

the manufacturing (assembling, packaging) lines of RMS can be seen as a flow of products.

Therefore, components of the RMS are subject to flow balance requirements, so that flow rates

are correctly split between different sub-lines. Moreover, the processing segment of the system,

i.e., machines, also have workload requirements so that input flows rates of production units

to a machine never exceeds its processing capabilities.
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Figure 5.3 – Example of a reconfigurable manufacturing system (RMS) 1.

RMS also have timing requirements, which set up upper bounds on the product cycle time,

i.e., the time it takes for a production unit to pass all manufacturing stages, i.e., to propagate

through all the machines from the source to the sink. Furthermore, product flows and ma-

chines have to be chosen in a way that the idle rate of the latter is minimized or does not

exceed a threshold. This is one of the major goals of load balancing in manufacturing since

the stalled machinery has similar maintenance and service costs but does not produce any

value. In many cases it is very unprofitable. For example, silicon foundries aim to configure

their processes to maximally utilize the production lines, because this can cover the costs of

the extremely expensive maintaining of the “clean” rooms.

Reliability requirements for manufacturing systems are similar to the ones from power systems.

Functional links of RMS can be interpreted as sets of manufacturing sub-lines for each product

type, or, similarly, as different manufacturing processes. If at least one of them for a given

product is active (none of the components along the line is broken or malfunctioning) then

the link is considered active as well. The requirement simply prescribes that the probability of

a functional link to become inactive must not exceed a threshold. It can be separately enforced

on every line (for certain product type) in every operation mode.

Exploration Problem Statement. The goal of the exploration problem is to select the proper

amount and types of machinery and connect them together with conveyors and/or gantries.

The system is subject to structural, interconnection, flow balance, workload, timing and

reliability requirements, while the optimization objective is either to minimize the total cost of

machines, or their total idle rate, or both (a weighted combination). The resulting architecture

will serve as an input to the controller synthesis problem. RMS control algorithm is responsible

for switching operation modes, dynamically adjusting and distributing the product flows

between machines, enabling and disabling the equipment. These operations are performed

based on the information provided by a set of sensors that monitor the state of the production

lines, as well as on the external requests, e.g., product demands.

1Figure courtesy of Rod Hill, graphic designer at the University of Michigan.

111



Chapter 5. Reliability-Driven Design of Industrial Cyber-Physical Systems

5.2.2 Specification

Using ARCHEX, we create a specification for an RMS as follows. The template T includes 4

component types: Source (SRC), Machine (M), Conveyor (C) and Sink (SNK). Sources and

sinks, respectively, provide new production units and collect assembled products. Therefore,

they can be also considered as machines, while we distinguish them for a more intuitive

formulation. Nodes of T represent these components, and edges between components of

different types are connectors that join conveyors and machines. Conveyors can be connected

together to split the input flow of production units. These horizontal connections represent

gantries or junction conveyors. The system is manufacturing two different products, A and

B, each of them having two machines along the production path (M1 and M2). Components

in T and library L are labeled with following attributes: cost c, product flow rate λ, failure

probability p. Machines are also characterized by their throughput µ. The maximum number

of components of each type on each production line as well as the summary of L is given

in Table 5.5. As there is only one component type in L to implement a machine, we use

the subtypes A, B, and AB to, respectively, categorize the machines that can be used only

for product A, B, or both. The RMS must support two operation modes. In mode Ω1, both

products A and B must be simultaneously produced with rates λA and λB . In modeΩ2, A is

produced with a double rate, 2λA , while line B is stalled. We assume that λA and λB are fixed

and that conveyors can automatically adjust to any input rate. Finally, failure probability is

2×10−4 for machines and conveyors and 0 for sources and sinks.

Similarly to the EPN example, we specify the interconnection constraints (e.g., “Every source

must be connected to exactly one conveyor” or “If conveyor’s input is connected to a product

source or a machine then its output must be connected to another machine or a sink”) using

the same patterns. We further impose balance constraints using the flow_balance pattern

for conveyors and machines. It requires the total input flow to be equal to the output flow for

these components, i.e., it ensures the correct distribution of product parts on the line. The

workload constraint no_overloads(M) is added for machines. We also use the mapping pat-

tern in_flow_implies_mapping_to(M1,A,B,AB): if machine M1 installed on line A receives

products of B in some operation mode, then it must be an RMT, i.e., a corresponding subtype

(AB) must be selected from the library to implement it. Similar constraints are written for

other product types and machines (e.g., M2).

We set up the two operation modesΩ1 andΩ2 using has_operation_mode(1A+1B,0A+2B),

which is an operation pattern currently implemented only for using it in RMS specifications

(not listed in Table 4.1). Its arguments represent the two modes by specifying the coefficients

for each product type. These coefficients multiply the original flow rates for these types (given

in Table 5.5). For example, 1A means that the original rate has to be used, 2A entails the double

rate of A, 0B marks the line B inactive in Ω2. The pattern labels the edges of the template

T with flow rates in both operation modes. More precisely, it creates the flow rate matrices

(objects of the QuantityMatrix class)Λk,x with k ∈ {Ω1,Ω2} and x ∈ {A,B}, where λk,x
i j is a real

decision variable representing the flow rate of product type x in operating mode k along the

112



5.2. Reconfigurable Manufacturing System

Table 5.5 – Summary of template and library for the RMS example. Flow rates λ and through-
puts µ are shown for, respectively, sources and machines. Notation {a. . . b} indicates that all
values are within the interval between a and b.

Type Number in T Cost, Fail prob. Flow rate λ or throughput µ (parts/min)

(A,B) ×103 A B AB

Source 1,1 0 0 12 10 -

Machine 3,2 {2,3,...,15} 2×10−4 3,6,20 3,5,13 10

Conveyor 3,2 0.5,1 2×10−4 - - -

Sink 1,1 0 0 - - -

edge ei j . ΛΩ1,A andΛΩ1,B set to zero all the flow rates between components associated with

different product types, as no line can be borrowed for another product. This is not the case

forΛΩ2,A , since the line associated with product B may be reused for product A in modeΩ2.

Finally,ΛΩ2,B is a matrix of zeros. Flow rate matrices are used in computing idle rates of the

machines, as well as in balance, workload and reliability constraints.

In one of the examples we also specify a bound of 10 parts/min on the sum of idle rates of

all the machines (timing constraint) by using the max_totat_idle_rate pattern. Finally, we

use max_failprob_of_connection to set up the maximum failure probability of production

lines A and B inΩ1 andΩ2. For RMS, we have extended the signature of this reliability pattern,

so that it also accepts the operation mode (e.g., “1A+1B”) as an argument. Also, we have

modified the way of computing the approximate reliabilities of functional links. The same

expression (3.9) (see Section 3.2.4) is used, however, for RMS we define degrees of redundancy

hi j in a different fashion. Instead of being the number of components of type j used in at

least one path of a functional link Fi , as defined in [96], the redundancy is now calculated as

the number of components of type j that have incoming flow of products processed on the

current line (link). More formally, ifΠi is the set from partitionΠ of T with all components of

type i , then:

hi j =
∑

k∈Πi

δ
j
k , (5.3)

where δ j
k is a Boolean variable equal to one if component k ∈ Πi has an input flow λ j of

product j greater than zero, i.e., it is used on the corresponding production line (manufac-

turing process). Paths between such components and the sink are implicitly provided by

the interconnection and flow balance constraints. The structure of RMS assumes that every

product type is eventually delivered to a single collection point (sink). Therefore, according to

our constraints, each instantiated component (machine, conveyor) that processes or transfers

certain production units, will be connected to the corresponding sink, which allows us to use

the number of such components as a degree of redundancy. Such approach does not require

using walk indicator matrices that provide the information about the existence of paths, as we

do for the EPN case study. Hence, we can avoid a large overhead, that comes with encoding of

these matrices, and obtain a more compact formulation.
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5.2.3 Optimization Results and Performance Analysis

Figure 5.4 shows four different RMS architectures, with slightly different requirements, gen-

erated by the monolithic optimization. Numerical results are summarized in Table 5.6. For

the first one (Figure 5.4a; no reliability or timing constraints enforced), single source-sink

path for each of the lines is enough, however, line A gets additional reliability by connecting

to line B. This is done to satisfy the workload constraints for two given operation modes, in

particular, to support Ω2. Part of the flow of product A in this mode is redirected to line B

(C1A2 → C1B2), where reconfigurable machines (M1B1,M2B1), marked by a red color, are

installed. Processed parts of product A are then sent back to Sink A (C3B2 → C3A1 → SnkA).

For the given template T, library L and requirements RA , reusing line B is more cost-effective

than installing additional conveyors and machines on line A.

The second architecture, shown on Figure 5.4b, has a reliability requirement for the nominal

operation modeΩ1 for both A and B: r∗
A,Ω1

= r∗
B ,Ω1

= 10−5. Therefore, additional components

are added on lines A and B (in particular, for line A this is done because its reliability in Ω1

cannot be improved by reusing line B). As a result, the input flow rate of Ω2 can be split

between machines on line A, i.e., line B is no longer reused by A in this mode, which would

have larger cost due to the need of installing expensive reconfigurable machines. Enforcing a

tighter requirement r∗
A,Ω2

= 10−7 forΩ2 leads to an architecture shown on Figure 5.4c. Here,

lines A and B are again connected, and RMTs are installed on line B. This provides the third

path from SrcA to SnkA in Ω2, which has smaller extra cost than adding extra components

on line A. The cost of the system is higher with respect to the second example despite the

same number of components, because reconfigurable machines (with subtype “AB”) are more

expensive than others in the library L.

The last architecture (Figure 5.4d) is generated with a timing constraint: we set up a bound of

10 parts/min for the cumulative idle rate of machines inΩ1 andΩ2. Line B is still reused in

Ω2, however, it is now more convenient to implement M1 and M2 on line A by inserting two

additional machines in parallel. Both of them are cheaper and have slower processing speed,

but as a result we achieve a total idle rate of 8 parts/min, which is a 3.5x reduction compared

to the first architecture. We have not used reliability constraints for this architecture, however,

line A gets a very high level of reliability as a side-effect of adding more machines. Clearly, it

has the biggest number of components among the four examples and, therefore, it is the most

expensive from the economic viewpoint. We further note that idle rate can be also added to

the objective function either as a single cost or in combination with the component price. In

such a way it is possible to explore the tradeoff between the two concerns. For the given setup,

however, optimizing for idle rate (using it as an objective) results in the same architecture, i.e.,

the idle rate cannot be made lower than 8 parts/min in any possible configuration.

Complexity and solving time for provided examples are summarized in Table 5.7. Augmenting

the formulation with reliability constraints (architectures 2 and 3) does not result in significant

increase of the complexity because, as discussed in Section 5.2.2, walk indicator matrices

are not created. Instead, degrees of redundancy of components as well as their approximate
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Figure 5.4 – RMS architectures generated by ARCHEX: (a) No reliability or timing constraints;
(b) With reliability constraints: r∗

A,Ω1
= r∗

B ,Ω1
= 10−5; (c) With tighter reliability constraints:

r∗
A,Ω1

= r∗
B ,Ω1

= 10−5 AND r∗
A,Ω2

= 10−7; (d) Timing constraint - bound on the total idle rate of
machines (3.5x reduction achieved).

reliabilities are computed using flow rate matrices, which are used in every RMS formulation.

The total time of setting up and solving the problem is on the order of seconds. This demon-

strates that using ARCHEX for architecture selection of reconfigurable manufacturing systems

is efficient. Moreover, our specification file consists of 67 instances of 13 patterns, while as

evident from Table 5.7, the size of each MILP formulation is two orders of magnitude larger.

This again confirms the advantage of using the pattern-based language, and the usability of

ARCHEX.

We have also evaluated the iterative approach for solving RMS exploration problems. The

implementation of the learning function LEARNCONS has been modified with respect to

Algorithm 3, so that the routine goes through every functional link in every operation mode.

We also leverage the fact that each product line has a single sink. If some component accepts

the input flow of some product type, interconnection and flow balance constraints ensure
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Table 5.6 – Numerical results for generated RMS architectures: cost, reliabilities, idle rate.

Architecture Cost Idle rate, Reliability

parts/min r A,Ω1 rB ,Ω1 r A,Ω2

1 45000 28 10−3 10−3 0.84×10−6

2 58000 52 0.84×10−6 0.84×10−6 0.84×10−6

3 64000 44 0.84×10−6 0.84×10−6 0.68×10−9

4 69000 8 0.68×10−9 10−3 0.58×10−12

Table 5.7 – Problem complexity and solver time for RMS design examples.

Architecture #Constraints / #Variables Solver time (s)

1 4430 / 4673 0.5

2 5266 / 4851 3

3 5266 / 4851 25

4 4431 / 4673 2.5

that this component has a path to the sink. Therefore, instead of adding components and

connections, the function proposes to increase the number of components that have a non-

zero input flow of a product, for which the corresponding functional link does not yet meet

the reliability requirement. This is flexible, because it does not explicitly require to add an

additional sub-line or to reuse the line for another product. This choice is left for the solver.

Intermediate conveyors (e.g., C2 in our template) can also be connected together to fine tune

the architecture.

We used MILP-MR to synthesize an architecture with same reliability requirements as in the

second example above (r∗
A,Ω1

= r∗
B ,Ω1

= 10−5). Since iterative problem modulo reliability does

not include the latter as a constraint, on the first iteration we obtain the same topology as

on Figure 5.4a. Reliability analysis then reveals that none of the two requirements is satisfied,

therefore, LEARNCONS generates additional constraints that request to increase the number of

components serving product A and product B. The second iteration results in an architecture

similar to the one shown on Figure 5.4c. Both r∗
A,Ω1

and r∗
B ,Ω1

are now SAT, however, the system

cost is more expensive compared to the monolithic optimization. The reason is the impact

of the FIXMAPPING function in Algorithm 3, which does not allow to modify the mapping

of existing components. That is, reconfigurable machines selected on line B during the first

iteration, cannot be replaced with the ones that handle only product B. Therefore, the solver

can only add new components on both lines A and B, which results in over-design. The

total number of components in the resulting architecture is equal to the one on Figure 5.4b

generated with the same requirements by the eager approach, but system cost is higher

because reconfigurable machines are used, and lines A and B are connected together.

If modifications of the mapping are not restricted, i.e., FIXMAPPING from Algorithm 3 is

skipped, then the aforementioned problem is solved in two iterations and provides the same

result as the monolithic optimization (Figure 5.4b). However, the performance of the MILP-
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MR is slower, because at every iteration it solves a problem of almost the same size as the

monolithic one. This is achieved by modifying the encoding of approximate reliabilities used

in the eager approach as described in Section 5.2.2. With this modification, the overhead of

reliability constraints is much less compared to the EPN case study, where the separation

resulted in several orders of magnitude difference. We note, however, that our modified

encoding was created under the assumption that production lines for each product type

have a single sink, which is typical for RMS. If this is not the case, the original definition of

degrees of redundancy [96] has to be applied. This will lead to heavy monolithic formulations,

and the iterative optimization (MILP-MR) will become preferable in terms of complexity and

speed. Moreover, integrating more domain-specific knowledge into the implementation of

LEARNCONS can provide the possibility of more careful tuning of the architecture at every

iteration, which is especially useful for large-scale designs.

5.3 Related Work

While the related work for CPS design methodologies and tools has been discussed in Sec-

tion 1.4, below we put the presented applications of our architecture exploration methodology

and the obtained results in the context of existing works in corresponding domains.

Aircraft Electrical Power Networks. Several recent works have tackled the problems of design

space exploration, synthesis, optimization and performance analysis of aircraft electrical

power networks. An optimization-oriented power system design methodology following

the platform-based design paradigm was proposed in [103], where initial specifications are

refined and mapped to the final implementation in four steps. In particular, the first two steps,

generator selection and distribution network synthesis, build up the architecture exploration

part of the design flow. Each of them formulates a binary optimization problem, with results

of the first step being used in the second. In our approach, the generator selection problem

is extended to a more general mapping problem, which is also decoupled from topology

selection. However, in our formulation we jointly solve the two problems. We also provide

an extensible toolbox for formulating and solving these problems, while all the constraints

from [103] can be easily incorporated in our framework and pattern-based language.

The aforementioned design flow has been extended in [99] toward a more holistic approach for

power system design, which enables systhesis of electrical power system topology and control,

subject to hererogeneous sets of system requirements. The latter are not always approximated

by binary or mixed integer linear constraints. However, the architecture exploration problem

in [99] is regarded as a MILP optimization problem. It is further extended in [12] with the two

optimization techniques, MILP with Approximate Reliability (MILP-AR) and MILP Modulo

Reliability (MILP-MR), which have been implemented in the first prototype of ARCHEX. The

former creates a monolithic optimization problem for aircraft EPN architecture selection,

based on approximate reliability constraints proposed in [96]. The latter is the iterative

optimization discussed in Sections 3.4 and 3.5.2 and used in both case studies in this chapter.

Overall, our exploration methodology builds on the seminal works by Nuzzo et al. [99, 12].
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In the context of this chapter, our approach is both more general and more efficient that the

one in [99, 12], since we support a richer set of requirements (e.g., timing, workload), achieve

problem formulations for power systems with up to one half of the constraints reported in

these works, and 2-4x faster execution speeds. Moreover, with respect to its predecessor,

ARCHEX 2.0 [62] can efficiently generate more complex architectures, e.g., including HV and

LV power distributions. Finally, the generality is achieved with our encoding of mapping

constraints (its advantage was discussed in Section 2.2.1). In the broader scope, we are also

able to apply our methodology and the ARCHEX framework to other classes of CPS, such as

manufacturing systems, fuel distribution systems and wireless networks.

A mixed discrete-continuous optimization scheme has been proposed in [40] with an applica-

tion to selection and sizing of components of an aircraft environmental control system. This

work involves a MILP-based topology selection executed in a loop with continuous sizing

routine. The former provides candidate configurations, which are optimized by the latter over

the space of continuous system propertes by running a set of simulations. Our approach is

different in that it includes continuous parameters (e.g., flow rates) in the MILP formulation.

Continuous properties of physical systems can be captured in our framework by static res-

olution and approximation of the dynamic behavior using the techniques, such as the one

discussed in Section 2.4.2.

In [78], EPN control problems are formulated and solved as MILP optimization problems

to yield load shedding, source allocation, contactor switching and battery charging policies,

while optimizing a number of performance metrics, such as the number of used generators

and shed loads. The authors model such system properties as instantaneous load power,

battery dynamics and contactor switching as MILP constraints and generate policies for the

load management system within a receding horizon approach. Control problems are out

of scope of the architecture exploration methodology and are currently not supported by

ARCHEX. However, we consider them an interesting future work for extending the framework

with new control patterns, which automatically translate the constraints as in [78] to a MILP

formulation. Many control requirements can be generalized from electrical power systems to

a more broader category of designs, which would allow ARCHEX to contribute also to control

design problems.

Finally, several works advocate the adoption of simulation for the analysis of aircraft power

systems performance [13, 69]. Simulation models can capture various system properties,

such as the ones of the power system, at different levels of complexity. These approaches,

however, are more focused on verification and not on synthesis, i.e., an architecture has

to be generated first. In contrast, the scope of our methodology and framework is correct-

by-construction architecture selection. Moreover, design space exploration, optimization

and analysis using simulation-based techniques can still become unaffordable from the

computational standpoint unless proper levels of abstraction are devised.

118



5.4. Conclusions

Reconfigurable Manufacturing Systems. Our methodology is able to tackle several steps of

high-level, conceptual design phase of manufacturing systems: equipment selection (number

and type of machines), configuration selection (the way machines are arranged and intercon-

nected) and process planning (distribution of product flows) [66]. Among the other related

activities, they constitute the so-called basic design phase of RMS [8].

Several approaches have been proposed for optimizing the configuration of reconfigurable

manufacturing systems of different complexity levels. In particular, an ILP-based design

methodology for scalable machining system using a partial enumerative procedure has been

proposed in [122, 121]. In these works, different system interconnections are explored in order

to minimize the total life cycle cost of the system. However, the authors made an assumption

that all the machines and other production modules are identical, which is unrealistic in mod-

ern RMS. Later on, various complex optimization problems have been proposed for optimized

selection of RMS configurations, where availability of machines [131], reconfigurability [43]

and different operation modes [32] are taken into account. Formulated problems are typically

multiobjective nonlinear programming models, while several techniques are proposed for

solving them, including genetic algorithms [43, 32] and tabu search [131].

In spite of the variety of existing approaches for the concept design of RMS, most of them are

still either generic or very sophisticated to be used by system designers. The reason for the

latter is the lack of supporting tools that allow to leverage the full power of these proposed

techniques. For example, adaptation of one of the optimization problems [131, 43, 32] to a

particular design by manually manipulating the mathematical formulation of constraints can

be utterly complex. In this light, the advantage of ARCHEX is its usability, i.e., the possibility of

writing design specifications for RMS configuration in a compact intuitive way using patterns.

ARCHEX is in its infancy in the RMS domain, because it is a tool that rather supports a generic

architecture exploration methodology. However, it is already capable of capturing a lot of

concerns typically accounted for during the basic phase of RMS design, while the extensibility

of the framework allows it to be customized to become a powerful tool in this domain.

5.4 Conclusions

In this chapter we have demonstrated the effectiveness of our methodology and the ARCHEX

framework on reliability-driven designs in two different CPS domains, avionics and manufac-

turing. We were able to synthesize correct-by-construction cost-effective system architectures

subject to a set of heterogeneous requirements (e.g., power flow, reliability, safety, workload,

timing). We have evaluated the two techniques for solving exploration problems, numerically

demonstrating their advantages and drawbacks. Overall, our experimental studies confirm

that ARCHEX satisfies the following important criterias:

• Usability for designers. The pattern-based formal language allowed us to quickly write

down the complex design specifications of the investigated systems with a set of short

expressions. The resulting input files were easy to understand and update, while their
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size (less than hundred rows of code) was several orders of magnitude smaller than

generated MILP formulations.

• Reusability and extensibility. We reused the same requirement patterns (e.g., intercon-

nection, reliability) across two different domains. The interface of patterns was extended

to support both applications. Furthermore, using the underlying generic basis of the

exploration problem (Chapter 2) we implemented several domain-specific patterns

that allowed us to more easily express some particular concerns (e.g., operation mode

requirements).

• Expressiveness. It was possible to capture a variety of design concerns, such as inter-

connection, balance, workload, timing, reliability. Moreover, the interface of existing

patterns provided enough flexibility to accurately capture the system structure at a

chosen level of abstraction (for example, it was possible to distinguish between left and

right parts of the aircraft, AC and DC buses, high and low voltage levels).

• Performance and Scalability. Architectures of realistic size and level of complexity

have been generated in reasonable time, typically on the order of minutes. Monolithic

optimization is preferable from the viewpoint of solution quality and optimality, while

for large-scale designs with heavy formulations of reliability constraints its performance

may deteriorate. In this case users may opt for the iterative optimization technique,

which runs much faster. With several solving algorithms at hand, ARCHEX is scalable.

The aforementioned features of design methodologies and tools are all essential for the de-

velopment of large systems. In ARCHEX, many important concepts, both methodology- and

implementation-related, can be reused across different domains. For example, new applica-

tion requirements of existing and new categories can be encoded within the same generic

basis, while the same codebase can be used to quickly implement them.

Our results also suggest several directions for future work, which would improve the accuracy

of high-level design capture. While some of these suggestions refer to the current case studies,

others would also be useful in a more generic sense:

• Multiple functional flows. Even though the theoretical background of our exploration

methodology allows several functional flows to be present in the same architecture, with

ARCHEX we are currently able to specify only a single one. A set {F1 . . .Fn} of functional

flows would significantly increase the flexibility of existing design patterns as well as the

overall expressiveness. These flows may represent several subsystems, that are jointly

optimized within the same exploration problem. For example, AC and DC loads of an

EPN may have different components in the paths that connect them to generators (e.g.,

for DC loads a rectifier has to be used to convert the AC from engines). Such difference is

not allowed within a single F, since every component type in F must occur at least once

in every path. Similarly, in an RMS different product types, even from the same product

family, can have different manufacturing processes, i.e., some of them can either bypass
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some machines in F or have additional ones. Therefore, having several functional flows

would allow to formulate exploration problems for a broader class of RMS.

• Reconfiguration requirements. In case of component failures, an EPN has to switch

contactors and reconfigure the power distribution network to keep the critical loads

powered. Similarly, an RMS has to redistribute production flows both in case of machine

failures and changes in the product demand (i.e., operation mode). The actions taken

by the systems during reconfiguration are also subject to constraints, such as timing.

For example, to switch a load from a faulty power source to a healthy one, a sequence of

contactors have to be opened and/or closed. Contactors cannot be switched simultane-

ously, which may cause paralleling of AC sources. Also, each switching requires some

time. A timing constraint for such reconfiguration of the power system should impose

that the overall time taken for switching a sequence of contactors, i.e., the time when a

critical load is unpowered, does not exceed a threshold. Intuitively, only two contactor

switches are required: disconnecting from an unhealthy source or bus and connecting to

a stable one. However, in general, the task is more complex, because other components

of the EPN also may have to be rerouted, e.g., to keep the power balanced. Therefore,

one not only needs to enumerate existing paths, but also their possible combinations,

to identify all reconfigurability scenarios. Similarly to enumeration of fault events [12],

this has exponential complexity, and efficient approximation techniques need to be

devised. Another possible direction is to explore iterative optimization techniques and

new learning functions specifically designed to support such reconfiguration aspects.

• Enhanced theory solvers. To minimize the gap of quality of solutions obtained with

monolithic and iterative optimizations schemes, the latter has to be refined by integrat-

ing more domain-specific knowledge in the theory solvers, i.e., analysis routines and

learning functions. This is especially important for RMS, where we obtained several

cases of over-design by using the “lazy” approach. Furthermore, the previous suggestion

(reconfiguration requirements) is encouraging for developing new theory solvers and

investigating iterative schemes modulo other concerns (not only reliability).

• Using simulation in the loop. A more careful investigation of system behavior with

generated architecture is possible via simulations. The latter can be used both for

optimizing some continuous-valued parameters [40] and for verification. For example,

system faults can be injected to an EPN to evaluate its resiliency. Simulation tool can

be used as a theory-solver in the iterative optimization routine (Algorithm 2), which we

further elaborate in Section 7.2.1.

• Control patterns. Finally, as already mentioned in Section 5.3, an interesting extension

for ARCHEX, both in general and within the scope of the presented case studies, is related

to capturing the constraints related to the controller. Then, by extending the solving

part of the framework with additional algorithms (e.g., based on receding horizon),

ARCHEX can be made useful also for the controller design step, which is succeeding the

architecture selection.
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6 Optimized Topology Selection and Compo-
nent Sizing for Wireless Networks

In this chapter we apply our methodology to architecture exploration problems in the wireless

networks domain to jointly select topology and component sizing. Among the application

requirements formalized in Chapter 3, there are several dedicated groups of constraints, which

are implemented in ARCHEX as a special extension of the framework. We evaluate this extension

on two case studies from wireless sensor networks: data collection and localization. ARCHEX

translates rich sets of network requirements (e.g., routing, link quality, energy) into mixed

integer linear constraints over path variables. These variables are a part of the basis of our

exploration problems and denote the presence or absence of paths between network nodes. We

then apply the proposed algorithm for compact, yet approximate, path encoding to reduce by

orders of magnitude the problem complexity, and use MILP to solve large-scale and otherwise

impractical problem formulations. By varying the degree of approximation provided by the

algorithm, we explore the tradeoff between optimality and runtime for small and large problem

instances. Finally, we also report on the results of an extensive signal strength measurement

campaign in indoor office scenarios, which allowed us to propose several improvements to

conventional wireless channel models in order to increase their accuracy. These improvements

are currently implemented in the ARCHEX framework as a part of its wireless extension and

library, while their use in a network simulator is planned as future work.

6.1 Overview

The ubiquitous deployment of devices in today’s Internet of Things (IoT) relies on wireless

networks to guarantee functionality and connectivity. The same applies to the rapidly in-

creasing number of networked cyber-physical systems, where physical plants and controller

units exchange sensor readings and control commands over the wireless channel. The system

and network design, however, is heavily influenced by decisions made in the early stages

of the design, when their impact is still hard to foresee. A major bottleneck is the lack of

comprehensive frameworks for scalable, multi-dimensional design space exploration under

heterogeneous network requirements (e.g., routing, latency, lifetime). Wireless network de-

signers are expected to simultaneously reason about many alternatives and have to take risky

decisions based solely on their heuristic evaluations and accrued knowledge. Exploration

by simulations and prototype testbeds is often time consuming and limited in the number
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of evaluated configurations. Moreover, the lack of guarantees of meeting the requirements

may lead to unexpected failures, unaffordable redesign cycles and, in certain cases, safety

violations. Therefore, methodologies and tools that enable efficient co-design and provide

correctness guarantees on a set of system-level concerns are highly desirable.

Wireless sensor networks (WSN) are one of the central wireless communication technologies

both in CPS [109] and IoT [10]. Autonomous, self-powered and wire-free devices (nodes) can

be distributed over a broad space providing large amount of real-time data while operating for

a long period of time (up to several years). The key features and connectivity of WSNs enable

users and researchers to easily access the data and experiment with various configurations

of the sensing infrastructure. Typical application of WSNs include, but are not limited to,

building automation (HVAC, adaptive lighting, gas detection), factory automation (environ-

ment control, monitoring of machines and robotic devices), security (survelliance, intrusion

detection), localization, tracking and others. Sensor networks can be deployed both in indoor

and outdoor scenarios.

Design of wireless sensor networks is a vast field of research [113, 46]. Our methodology

focuses on a set of high-level decisions, such as selecting network components from a library

of communication devices, and network topology. The latter includes the physical topology,

i.e., node placement in the deployment area, and the logical topology, which consists of a

set of routes in the network. Even at this level WSNs are subject to a variety of general and

application-specific design concerns, so that design space exploration can have plenty of

objectives [56]. Many of them can be already (or potentially) captured by ARCHEX. Hereafter,

we discuss only those types of requirements that are used in our design examples, while the

reader is referred to [129, 46] for a broader classification.

Case Studies. We have selected two examples of wireless sensor network deployments to

evaluate our methodology and toolbox. Both of them are related to building automation

and are deployed indoors, for example, in an office environment. First one, data collection

network, consists of end devices (sensors), which measure or detect some physical environ-

ment phenomena, one or more base stations, which collect and process sensor data, and

routing devices, or relays, that forward the messages towards the base station. Additionally,

collected data (e.g., readings of light, humidity or gas sensors) may be provided to a control

algorithm that manages a set of actuators (e.g., window blinds, room lights, heaters). Second

application is a localization network, in which sensor nodes either determine their locations

relative to each other or are used for positioning and, possibly, tracking of a device (mobile or

static). A variety of localization WSN-based systems have been proposed [81] with different

architectures and localization techniques involved. In this work, we use one of the most typical

scenarios for evaluation of our methodology, as detailed in the next section.

Both our applications have been inspired by POVOMON [20], an open-data IoT sensor

network designed in response to the growing demand for intelligent sensing solutions for

buildings automation and power grids management. POVOMON has been deployed on

one of the floors of the Department of Information Engineering and Computer Science at
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the University of Trento, Italy. The network1 covers a set of typical indoor office spaces

(e.g., corridors, work and study rooms, chill areas) within an overall area of 40×40 m. It is

currently a data collection network of 25 nodes that track various indoor conditions including

temperature, light, humidity and vibration. In our design examples, we synthesize WSN

topologies of a larger scale (e.g., with a sensor placed in every office room) in the same indoor

area. Our goal is to show that the proposed methodology can be effectively used for the

exploration of high-level WSN architectures by selecting and calibrating network devices and

topology. Generated architectures provide a set of guarantees to designers, thus increasing

their confidence during the real deployment phase.

Requirements. One of important high-level design concerns in wireless networks, WSN in

particular, is the node placement. Having a set of devices, the designer has to decide where

to deploy them so that the network correctly performs its function as well as meets non-

functional requirements (e.g., power consumption). Limitations and constraints for node

placement are imposed by the number of available nodes as well as environment character-

istics and certain features of the deployment area. In particular, it is common for a network

designer to refer to a civil engineer, who can highlight potential spots, or candidate locations,

for placing the nodes (e.g., walls, ceilings). Therefore, node placement is typically a discrete

choice, which can be encoded as a set of decision variables in the network optimization

problem.

Another paramount design aspect is routing. For example, in a data collection network, every

sensor must have at least one route to the base station in order to deliver the readings. In

some networks, routes are assigned dynamically by a routing protocol depending on current

conditions of links and nodes (e.g., noise, battery level, location), while a lot of deployments

use static route assignments. Moreover, routing protocols may also select routes out of a set of

predefined candidates. Our design framework focuses on static assignments, therefore, in the

scope of routing requirements our goal is to define a valid logical topology, i.e., routing, that

meets other high-level design concerns. These requirements are detailed in Section 3.2.6.

Wireless networks are also subject to link quality (LQ) constraints. Several metrics, such as the

ones exemplified in Section 3.2.7 (RSS, SNR, BER, ETX) can be used in these constraints. The

ability of a node to reliably deliver a message to a sink (i.e., without errors) directly depends

on the LQ level of wireless links and routes. In particular, network reliability requirements are

highly related to the LQ. That is, certain level of network reliability is achieved by using links

with an acceptable LQ level. Additionally, network fault resiliency is increased by having several

replicas for every route, which we also express as a routing constraint (see Section 3.2.6). In this

work, the LQ naturally depends on the selected routes as well as on some device parameters,

such as TX power and antenna gain. Device configurations in our framework are selected via

mapping the nodes of the topology to a library of network components.

Nodes that compose a WSN are typically autonomous battery-powered devices, while replac-

ing the batteries is often an expensive task, since the network can be large-scale or deployed in

1POVOMON website: http://povomon.disi.unitn.it.
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a hazardous area. Therefore, energy consumption requirements represent a significant aspect

in sensor networks, as well as in other types of wireless communication. As a rule of thumb,

WSN nodes must have a lower bound on their lifetime, i.e., the time until their battery is

depleted so that they cannot perform a dedicated system function. Section 3.2.8 details the

energy consumption constraints. In our formulation, the lifetime of nodes and the network

depends on many design decisions, such as node placement, routing and the choice of the

radio parameters, and can be jointly optimized with other objectives.

Finally, localization networks suggest a set of corresponding requirements, such as accuracy,

precision, robustness and so on. We currently support a so-called reachability constraint,

which prescribes that there must be a certain number of links between anchor nodes and a

mobile target in a set of possible locations (evaluation points). These links must satisfy an

LQ requirement. With these constraints, generated node placement ensures that localization

is performed via a set of reliable links thus providing implicit guarantees on the quality, as

further explained in Section 3.2.9.

6.2 Specification and Evaluation

All the numerical experiments reported in this chapter have been performed on an Intel Core

i7 3.4-GHz processor with 8-GB RAM running Ubuntu 16.04.

6.2.1 Data Collection Network

As discussed in Section 4.3.2, the wireless extension of ARCHEX accepts a floor plan as an

additional input for creating exploration problems. Therefore, as a first step we create an

SVG file of the deployment area with dimensions 75×46 meters, which includes walls and

doors, their thickness and material (e.g., glass, plasterboard, wood), and locations of WSN

nodes. Other obstacles are neglected in this example. Node locations reflect the structure of

the network template T. The floor plan is shown on Figure 6.1a. There are 35 sensors (shown

in green) located in rooms and corridors, and one base station (red). Their positions are fixed.

The remaining nodes (cyan color) represent candidate locations for relays. The total number

of nodes in the template T is 136.

We then create a library L with the following components: Sensor, Relay, and Sink. Each com-

ponent is labeled with its cost c, processing delay τ, TX power tx, antenna gain g, and current

consumptions for the radio and other hardware components, as explained in Section 3.2.8.

The characteristics correspond to those of real WSN hardware (e.g., transceivers and chips

from [5]) and are summarized in Table 6.1. We select from only 3 distinct transceivers, while

each of them can be configured to several different TX powers. Also, external antennas can be

used. In the latter case, the cost of the device is increased.

In the specification, we declare the functional flow F= (Sensor, Relay, Sink), so that only the

upstream traffic is allowed. The composition rules of T allow sensors and relays to commu-
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Table 6.1 – Summary of the WSN platform library L: transceiver names, costs, processing
delays, TX powers, antenna gains and current consumptions in TX, RX, idle (active) and sleep
modes. Using an external antenna increases the cost for 5$.

Device Cost Delay TX power Gain Currents (mA)

($) (s) (dBm) (dBi) cT X cR X cacti ve c sl eep

CC2420 30, 35 0.8 0, -3, -7 0, 5 17.4, 15.2, 12.5 18.8 0.426 0.0021

CC2520 40, 45 1.1 3, 0 ,-4, -7 0, 5 31.3, 25.8, 23.1, 20 18.5 1.6 0.0015

CC2650 50, 55 0.7 0, 5 0, 5 6.1, 9.1 5.9 0.061 0.001

nicate to other relays or directly to sinks, with all other connections (e.g., between sensors)

being restricted. The specification is further extended with the parameters of the environment,

the protocol and the batteries. In particular, we assume the same noise level of -100 dBm for

all links. Our network uses a TDMA protocol with a slot duration of 1 ms and 16 slots in a

superframe, a packet length of 50 bytes. The bit rate for all links is 250 kbps. Sensors transmit

a packet every 30 s and have zero cost. Finally, the power of WSN nodes is constrained by two

1.5 V AA batteries, each of 1500 mAh.

We then use routing, link quality, timing and energy consumption patterns to set up the

requirements. Every sensor in a data collection network must have a route to the base station.

We declare these routes with the pattern p= has_path(A,B), where p, A and B are symbolic

names for path, source and sink. To increase the network resiliency to faults, we add some

redundancy. To do this, we require two disjoint routes for every sensor to the base station

by using the pattern disjoint_links(p1,p2). In total, we require 70 routes (2 for each of

35 sensors). For the link quality requirements, we consider the signal-to-noise (SNR) metric

and the pattern min_signal_to_noise to set up a minimum SNR of 20 dB for every link. We

instantiate a max_latency_of_path(p,5,s) pattern to set up a bound on the end-to-end delay

of every path p to 5 seconds. Finally, with the min_network_lifetime pattern we require

node batteries to last for at least 5 years. The whole specification created in ARCHEX contains

only 150 lines of code.

Table 6.2 shows the solver time and synthesis results obtained while optimizing for different

objectives: dollar cost (final topology shown in Figure 6.1b), network energy consumption

and an equally weighted combination. The selected components have different TX power,

while some of them also have an external antenna to satisfy the LQ constraints. The result

of minimizing for energy consumption is a network with a much higher dollar cost. Power

consumption can be reduced by decreasing the TX power, while for certain links this may

result in LQ constraints violation. This leads to the selection of more expensive low power

components, for example, with smaller radio TX and RX currents or smaller MCU standby

current, which highly affects the lifetime in the long run. The calibration of the software

components (e.g., protocol parameters, such as slot duration, epoch, packet size) will be

object of future work. The tradeoff between dollar cost and energy consumption can be

explored when optimizing for a combination of objectives.
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Figure 6.1 – (a) Template T of the data collection WSN (total of 136 nodes): sensors (green),
sink (red) and candidate locations for relay nodes (cyan); (b) Generated topology of the data
collection WSN optimized for dollar cost (only used nodes and links are shown).

For each experiment we obtain MILP formulations of around 1.5×105 constraints and 4.5×104

variables, which is orders of magnitude larger than the size of the specification written in

ARCHEX. The number of candidate paths K ∗ generated by Algorithm 1 for every required

connection was set to 20, which, based on the discussion in Section 6.2.3, provides a very

cost-effective solution. We used link path loss values, precomputed by the multi-wall channel

model, as weights for edges of the network graph. Exhaustive path enumeration led to prob-

lems with over 107 constraints and 1.5×106 variables, which required several hours only for

the encoding, to be contrasted with a few minutes in our approach; no solution was obtained

before an 8 h timeout. Our path encoding algorithm reduces the problem size by two orders of

magnitude. At the same time, it allows handling more complex problems than the ones in the

literature [106, 108], in both architecture size and dimensionality of the design space.
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Table 6.2 – Final number of nodes, dollar cost, average node lifetime and solver time for a data
collection WSN optimized for different objectives.

Objective # Nodes $ cost Lifetime (y) Time (s)

$ cost 61 1022 7.33 45

Energy 63 1480 12.24 260

$ + Energy 61 1241 9.69 66

Table 6.3 – Final number of nodes, dollar cost, average number of reachable anchors by the
mobile node, and solver time for a localization network optimized for different objectives.

Objective # Nodes $ cost Reachable Time (s)

$ cost 28 1050 3.1 115

DSOD 24 1310 3.6 121

$ + DSOD 24 1180 3.03 144

6.2.2 Localization Network

For this case study, we consider a range-based localization system that uses trilateration to

calculate the 2D position of a mobile node (target) using distance measurements from fixed

nodes with known locations (anchors). We assume that anchor nodes communicate only to

the target and not to each other. The mobile node is responsible for computing its position

based on the signals received from the anchors. Therefore, instead of requiring certain routes

in the network topology, we need to ensure a set of local point-to-point connections between

anchors and possible locations of the target, i.e., the network has a star topology. The goal

of the exploration problem is to select anchor nodes from the library of components and to

determine their best placement based on localization constraints specified below.

We specify 150 candidate node positions and 135 evaluation (mobile node) locations for

the same building floor, as shown on Figure 6.2a. The min_reachable_devices pattern

implements the localization constraints (4a)-(4b), and we apply it to require that, at every

test point, the mobile node must be able to receive signals from at least 3 distinct anchors.

Furthermore, with the same pattern, we request that only reliable links with a minimum RSS

of -80dBm must be selected. This also contributes to decreasing the ranging error, which

rapidly grows for larger path losses and unstable signals [64].

We solve the problem for two different cost functions: dollar cost (result in Figure 6.2b) and

difference of sum of distances (DSOD) between network nodes and test points. The latter was

proposed in [111] as a linear version of the Cramer Rao lower bound - a metric used in the

accuracy evaluation of localization systems. To set up the reachability matrix r and localization

constraints, we use Algorithm 1 with K ∗ = 20 candidate anchors for every test point.

Results in Table 6.3 show that optimizing for the DSOD objective produces a placement with

smaller number of more expensive nodes equipped with antennas, i.e., their signal can reach
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more test locations. This system also has smaller power consumption. In all experiments,

the number of variables and constraints counts up to, respectively, 3×104 and 3.5×104. A

full enumeration of all test points reachable by all anchors would lead to several millions

variables and constraints, thus making design exploration intractable. This again proves the

effectiveness of the approximation.
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Figure 6.2 – (a) Template T of the localization WSN: candidate locations of anchor nodes
(green nodes, total of 150) and evaluation points (blue dots, total of 135); (b) Generated node
placement for the localization WSN optimized for dollar cost (28 anchor nodes total).

6.2.3 Scalability and Optimality

We test the scalability of our techniques on data collection network architectures (same as

in Section 6.2.1) with an increasing number of nodes (total) and end devices (sensors) in the
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template T, and with K ∗ = 10, as reported in Table 6.4. The significant reduction in problem

complexity and execution time shows the advantage of using the approximate encoding of

network paths in Algorithm 1. We also provide the measured (for larger instances - estimated)

number of constraints for the case of full enumeration of paths, which are several orders

of magnitude larger. Execution times of the order of days are expected to solve these large

problem instances, since only a few smaller networks were synthesized within an 8 h timeout.

The effect of selecting different values of K ∗ is demonstrated in Table 6.5. Only optimizations

for dollar cost are shown, while very similar trends have been also observed for other objec-

tives (e.g., energy consumption). Comparison with the optimal solution obtained without

approximation is only possible for the small WSN template, since exhaustive exploration

becomes soon intractable. Increasing K ∗ leads to higher quality results in terms of cost. In

general, when K ∗ →∞ all possible paths are enumerated, leading to the global optimum.

However, large values of K ∗ result in a nonlinear growth of execution time, while the rate of

improvement in the cost function decreases. In our experiments, a small decrement in cost for

K ∗ > 10 comes at a very large price in terms of performance. On the other hand, when K ∗ = 1

only one candidate path is proposed for every required route, i.e., the routing is fixed. In this

case, the performance is comparable to the one of heuristic algorithms in the literature [108].

Yet, even if a single candidate is generated for every required route, our approach additionally

guarantees optimal component sizing for the selected topology. Moreover, slightly increasing

K ∗ significantly improves the cost function w.r.t. K ∗ = 1 without much timing overhead.

In general, the value of K ∗ depends on the specific problem at hand (e.g., the types and

number of constraints determining the feasible space of the optimization problem as well

as the cost function). A reasonable method for deciding K ∗ would be to setup a systematic

search for a given problem by generating multiple topologies for different values of K ∗ and

stopping once the execution time becomes higher than a predefined threshold or there are

no further cost improvements. As K ∗ increases, we obtain solutions that are at least as good

as, if not better than, the previous ones. The best generated topology can then be returned

as a final result. Apart from incrementally increasing K ∗, smart search strategies can also be

applied, e.g., binary search.

Furthermore, we can provide a few guidelines that we empirically identified while validating

our approach on the reported case studies. For example, for network sizes in the range of

our examples, a reasonable recommendation would be to select a value of K ∗ between 3 and

10, since values outside of this interval provided marginal advantages in terms of cost versus

execution time. For smaller networks we can safely use a large K* to achieve better solutions

without compromising the execution time. We can also use a larger K* for networks made up

of well-identifiable clusters of nodes. In this case, increasing K* tends to generate new path

candidates that have the same links (edges) but in a different order. Therefore, fewer new

variables are introduced with each new path.
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Table 6.4 – Number of constraints and solver time for different network architecture sizes
generated by using the approximate path encoding algorithm (K ∗ = 10) compared to full
enumeration of paths (“TO” means that no solution has been found within an 8 h timeout).

#Nodes #End devices #Constraints, ×103 Time (s)

(total in T) (to be routed) (full / approximate) (full / approximate)

50 20 862 / 24 8233 / 12

100 20 1743 / 54 TO / 28

100 50 ∼ 3800 / 125 TO / 55

100 75 ∼ 4800 / 150 TO / 93

250 50 ∼ 3500 / 108 TO / 340

250 100 ∼ 5700 / 175 TO / 1175

250 200 ∼ 10000 / 310 TO / 1708

500 50 ∼ 7400 / 230 TO / 818

500 100 ∼ 11000 / 346 TO / 5330

500 200 ∼ 21000 / 655 TO / 8354

Table 6.5 – Costs and solver times for data collection networks with a small template T1 (20 end
devices, 50 nodes total) and a larger template T2 (200 end devices, 250 nodes total) synthesized
using different values of K ∗, compared with the optimal solution (only for T1).

Template Result K∗ = 1 K∗ = 3 K∗ = 5 K∗ = 10 K∗ = 20 optimal

T1
Cost ($) 920 861 805 642 619 579

Time (s) 3 7 10 12 442 8233

T2
Cost ($) 2594 2280 2083 1909 1842 -

Time (s) 8 85 358 1708 15334 TO

6.3 Improving the Wireless Channel Model

6.3.1 Motivation

One important consideration in wireless network design tools is their possibility of captur-

ing the properties of the channel model. Estimated path loss of signals is used in many

design decisions at different levels, including topology selection. Real signal path loss is

very non-stationary and subject to a large number of random effects of the channel, such as

reflections, shadow fading, multipath progagation and interference. Conventional channel

models provide a reasonable approximation for applications in which a simplified physical

layer representation does not severely compromise the overall outcome [125]. However, for

several emerging systems, such as localization networks, these models become a bottleneck

for achieving adequate results.

Undoubtfully, due to random factors affecting the signal, none of the channel models can cap-

ture all the properties of a particular area. Therefore, real-world prototyping and calibration of

a system is an important and unavoidable step in the wireless network design flow. However,
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many decisions, e.g., hardware selection and routing, have to be made on earlier stages. In fact,

high-level design spaces, in particular for WSN, can be huge. Their exploration can quickly

become complex, time-consuming and overall unaffordable. Therefore, to estimate how the

network would behave in a real environment, many designers rely on simulation-based design

space exploration. The latter allows them to evaluate more configurations in shorter time,

compared to prototyping.

Simulation models might not capture all possible aspects of a real scenario, however, they

can still be very useful in obtaining best- or worst-case boundaries [85]. Same applies to

our architecture exploration methodology. Many network requirements in our approach are

expressed using path loss values, hence, their accurate estimation allows the tool to provide

more precise guarantees on system properties (e.g., link quality, energy consumtpion). We

note that, similarly to [108], ARCHEX allows to integrate the site survey data in the formulation,

i.e., to replace the channel model values with on-site signal strength measurements. How-

ever, in large-scale networks this may not be applicable due to a large number of required

measurements (e.g., between every pair of candidate locations).

As mentioned in Section 4.3.2, ARCHEX implements the multi-wall channel model, which

is based on the classical log-distance model [110] and takes obstacles into account (see

Expressions (4.3) and (4.4)). In the following sections, we summarize our efforts on improving

the accuracy of the log-distance model, recapped below:

PL = PL(d0)+10η log(d/d0)+Xσ,

where d is the distance between TX and RX antennas, PL(d0) is the path loss at a reference

distance d0, which is typically one meter for indoor WSNs [42], η is the path loss exponent

(PLE), which is determined either empirically or from the literature, and Xσ is a zero-mean

Gaussian random variable with standard deviation σ.

Our study is based on an extensive set of RSS measurements collected within different typical

indoor spaces and node placement scenarios for wireless sensor networks [64]. We compared

the results with corresponding values from the log-distance model, which allowed us to

reveal interesting regularities within the measured data. Based on our observations, we

propose several improvements for the existing model, which we have implemented in ARCHEX,

while their integration would be also beneficial for network simulators and other design and

optimization tools for wireless networks.

6.3.2 Received Signal Strength Measurements in Indoor Environments

In all experiments we considered a WSN operating in the ISM band (2.4 GHz). The measure-

ments were performed in several realistic indoor spaces, moreover, different node placement

scenarios and antenna polarization were involved. We performed two groups of experiments:

baseline measurements and sensor node measurements. The former was performed by trans-

mitting an un-modulated carrier (sinusoid) and using a spectrum analyzer for measuring the
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RSS with an intention to provide a baseline for WSN experiments. For brevity, we completely

omit the corresponding results and refer the reader to [64]. The second and primary group of

RSS measurements was collected using two off-the-shelf WSN nodes, TX and RX. We made

several experiment datasets in each indoor space with different mutual placement of nodes.

For each scenario we varied the distance between the nodes with a step of 1 [m] and collected

the RSS data for 5-10 minutes. With a 5 [ms] average sampling period, this resulted in roughly

120000 values in each dataset.

Equipment.WSN measurements were taken with the Z1 off-the-shelf platform Zolertia with

an MSP430 MCU and a CC2420 low-power radio. Both TX and RX nodes were enclosed in a

plastic box, powered by two AA batteries and equipped with a 5 dBi external RP-SMA antenna.

All nodes run TinyOS 2.1.2 with our testbed application. A gateway node is connected to a

laptop and forwards commands to the TX/RX nodes. When the TX node receives the “start”

command from the gateway, it starts sending small packets (the payload includes only a 1-byte

sequence number) to the receiver. The RX node processes each packet and stores the RSS value

in the log. After each experiment, logs are downloaded from the receiver via a micro-USB cable.

For communication with the flash, we used the components from Trident, an open-source

software for in-field connectivity assessment for WSN [57]. For all experiments, TX power was

set to 0 dBm (1 mW). Each experiment duration was set to 10 minutes.

Measurement Scenarios. All measurements have been performed in the building “Polo Fer-

rari” of the Department of Information Engineering and Computer Science at the University of

Trento, Italy (partly, in the same area considered in the case studies in this chapter). Following

spaces were considered:

• A corridor (in the following, corridor1), 48 x 2.8 x 2.6 [m3], first wall - glass, second wall -

gypsum plasterboard with many adjoined offices.

• Another corridor (in the following, corridor2), 56 x 2.42 x 2.5 [m3], both walls made from

gypsum plasterboard, with adjoined offices on both sides.

• A hall, 19.4 x 9.8 x 2.4 [m3], side brick walls, front and back glass walls.

• A big office room (11.5 x 7.5 x 3 [m3]), one glass wall, 3 other walls - gypsum plasterboard.

The room is furnished with a lot of working desks, chairs, PCs.

Our measurement scenarios aim to cover typical alternatives of WSN nodes mutual placement.

We are interested in finding out regularities or anomalies in the RSS behavior across these

scenarios (they are illustrated on Figure 6.3):

1. “Single wall”. In this scenario, both TX and RX nodes were placed on the same wall at

the height of 2.25 [m] (we ran some calibration tests beforehand, placing the nodes on

the bottom, middle and top of the wall and observed the strongest and most stable link

at the top).

2. “Middle”. Both nodes were placed in the middle of the space under study at the height

of 0.8 [m] (such height is very convenient for real case studies, like a bodyworn node, a

PDA in a hand or a robotic device).
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“Single wall” “Middle”
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Figure 6.3 – WSN node mutual placement scenarios (exemplified in a corridor).

3. “Two walls”. This scenario was run only in the corridors. Nodes were located on recipro-

cal walls (height - 2.25 [m]). This placement scenario is typical of a WSN deployment in

a corridor.

4. “Combined”. Was run only in the corridors. The RX node was placed on the wall (height

- 2.25 [m]) and the TX node was located in the middle (height - 0.8 [m]).

Several factors are common for all scenarios. We varied the distance with a 1 [m] step to

obtain distinct experimental datasets. This step has been chosen considering a good trade-off

between the position updates of an object (e.g., a human) moving in a realistic scenario and

the reasonable total time for collecting the measurements. The interval that we considered in

our statistical investigation was [1 m, 15 m] in most cases (in some of them it was different due

to space/scenario limitations). Second, we used the RSS from the minimum distance as the

PL(d0) in calculations. Third, TX and RX antennas were in co-polarization condition. Finally,

no mobile nodes were present in our scenarios and the LOS condition was assumed.

Results. Our results come from analyzing 16 distinct groups of data. Four are the baseline

measurements, the rest are experimental datasets obtained with sensor nodes. Each group

consists of separate measurement sets related to a particular distance between TX and RX.

Each of the latter has roughly 60000 or 120000 values observed over a 5 min or 10 min period,

respectively. TX and RX antennas were placed with the same polarization and their gain effects

are removed from the data.

As part of the analysis, we compare the empirical results from different scenarios with cor-

responding analytical values, which could be provided by a log-distance model in a WSN

simulator. The latter means that channel parameters in the tool, i.e., PL(d0) and η, are con-

figured with limited knowledge of the real channel under study. That is, the designer selects

them partly or totally relying on best practices, because doing a channel characterization

for deriving them empirically could be complex and time-consuming. As we demonstrate

with our measurements and analysis, these best-practice parameter values in fact can be very

different from those estimated from the data. Even if PL(d0) is taken from measurements (it

can be done easily), different values of the PLE result in considerable difference in the curves,
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which entails incorrect results provided by the channel model.

For each comparison we use two curves calculated with formula (4.3): analytical and empirical.

For the former one we select the values of the path loss exponent η from the literature. Typical

value of η for indoor free space is 2, while it can be smaller for corridors (down to 1.5) and

higher for furnished rooms (up to 3) when the LOS condition is assumed [42]. In industrial

environments η could be bigger (up to 5-6) [110]. In this work we select analytical η to be 1.6

for the corridors, 2 for the hall and 3 for the office room. For the empirical curve we estimate η

from our measurements. For doing so we calculate the linear regression for each dataset (RSS

vs distance) and use its slope as an approximation for η. The value of PL(d0) for both curves is

estimated from the data. For the “Combined” and “Two walls” scenarios we used 2 [m] and

3 [m], respectively, as the reference distance d0. For all other cases 1 [m] was used. The mean

RSS value from corresponding datasets was used as PL(d0). The random component Xσ of

the model was set to zero to verify later on, which distributions describe the deviations of real

RSS values from the log-distance curve in a best way.

For the sake of brevity, we omit the plots that show the measured RSS vs distance. Instead, we

show the empirical log-distance curves with parameters estimated from the collected data, and

remark that they represent the decay trend well. The data itself is quite random, as expected.

Our primary goal is to explore the differences between the curve drawn from the data and

the one typically provided by a channel model in a simulator within a particular scenario.

Random factors will be represented by a distribution, which is studied in the following section.

However, if the random component is calculated around the wrong curve, the simulation

outcome might be far from reality.

By comparing empirical and analytical curves for WSN a difference of 5-10 [dBm] can be

observed (Figures 6.4 a-f). In most cases, the empirical curve is higher (i.e., the path loss is

smaller). One exception is the “Two walls” scenario (Figure 6.4f), where measured path loss,

conversely, is higher than the one predicted by the analytical model. Comparison of scenarios

reveals very high similarity in empirical PLE values for “Single wall”, “Combined” and “Two

walls” scenarios in different spaces, i.e., the curves have similar slopes (Figures 6.5 a-b), while

for the “Middle” scenario path loss from the office room has behavior different from other

spaces (Figure 6.5c). The office room is furnished and also WSN nodes in this scenario were

placed at a lower height compared with others. Hence, the occurrence of reflections and

scattering has a significant impact on the path loss.

Despite being highly similar within the same node placement scenario, empirical values of the

PLE are, nevertheless, considerably dissimilar across different scenarios. This is a very impor-

tant observation because it suggests that a single value of the PLE cannot accurately describe

the path loss between every TX and RX within the same space if their mutual placement is

different. Currently only one PLE value can be set for the whole simulation in the tools that

implement the log-distance model. This might cause significant inaccuracies.

Also, one can observe from Figures 6.5 (a-c) the difference in the path loss within the same
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placement scenario in different spaces. As the PLE values are similar, this is due to the varying

PL(d0) parameter. For instance, on Figure 6.5a corridor2 has higher values, probably, due to

the wave-guiding. On Figure 6.5b the path loss in corridor2 is smaller than in corridor1. This

is likely related to different materials of these spaces and, therefore, different electromagnetic

behavior of the signal.

6.3.3 Statistical Characterization of the 2.4 GHz Radio Channel

We also study the deviations of measured RSS from the root mean square (RMS) values

computed for corresponding measurement groups, at different TX-RX distances. In reality,

these deviations occur due to random fading effects such as shadowing. This would allow

us to verify if all deviations of the RSS within different scenarios, spaces and distances can

be adequately modeled by the same distribution. This is the way of implementing the log-

distance model in WSN simulators: all random effects are considered by adding a random

variable Xσ, which is a standard normal distribution. The value of σ is the same for all signal

evaluations within a simulation.

Fitting distributions is performed using the maximum likelihood (ML) method. We selected
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Table 6.6 – MLE for data agglomerates across all measurement scenarios

Distance Distribution ∆AIC

1m Normal (µ = 1.011, σ = 0.142) 7450
2m Lognormal (µ = 0.0025, σ = 0.259) 14757
3m Gamma (a = 27.960, b = 27.425) 5337
4m Lognormal (µ = 0.0012, σ = 0.187) 24025
5m Lognormal (µ = 0.0020, σ = 0.238) 53088
6m Lognormal (µ = 0.0027, σ = 0.284) 12483
7m Lognormal (µ = 0.0018, σ = 0.234) 80391
8m Lognormal (µ = 0.0040, σ = 0.349) 647
9m Lognormal (µ = 0.0056, σ = 0.416) 40594
10m Gamma (a = 11.802, b = 11.273) 13355
11m Gamma (a = 16.601, b = 16.070) 19764
12m Lognormal (µ = 0.0044, σ = 0.370) 58543
13m Lognormal (µ = 0.0019, σ = 0.243) 16629
14m Nakagami-m (m = 7.474, ω = 0.187) 1864
15m Lognormal (µ = 0.0019, σ = 0.255) 64069

Normal and Lognormal: µ - mean, σ - standard deviation. Gamma: a - shape, b -
rate. Nakagami-m: m - shape, ω - scale.

six distributions for our analysis, following the similar processing flow presented by Smith et

al. [120] for body area networks. They are Normal, Log- normal, Gamma, Weibull, Nakagami-

m and Rayleigh. We use the Akaike information criterion (AIC) [6] to compare the fitted

distributions. This criterion allows finding a model with the minimum information loss

among those that are considered. We consider AIC a relevant metric for our study, because we

are interested not only in accurate modeling of distribution tails (i.e., high attenuation region),

but also in the values around the mean.

For comparision, we created agglomerated datasets by joining the RMS-normalized values for

each scenario (for example, 4 datasets for the “single wall” scenario were joined into one for all

TX-RX distances) and, similarly, for each indoor space (e.g., joined the data from all placement

scenarios for “corridor1”). For brevity, we omit most numerical results and report only the

total agglomerate of all data across all studied indoor spaces and scenarios in Table 6.6. From

the results we observe that RSS deviations at different TX-RX distances are best described by

several distributions. While the Lognormal distribution is the dominating one, it has different

parameters for different distances. Moreover, other distributions (e.g., Gamma, Normal) are

also present. On the whole, our results support the hypothesis that a single distribution is

not able to describe random RSS deviations well, and therefore, this might be a potential loss

of accuracy for the log-distance path loss model. We refer the reader to [64] for an extended

discussion.

6.3.4 Proposed Improvements for the Channel Model

On the basis of our results we propose the following improvements to the log-distance channel

model in WSN simulators. First, different values of the path loss exponent can be used
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for different placement scenarios. During a simulation one could determine the mutual

placement of nodes, for which the path loss is evaluated, and use the corresponding PLE. In

particular, we noticed that the PLE for the “Two walls” scenario can be 2-3 times higher than

for others. Therefore, it requires a separate PLE value to provide accurate results. Values for

other placement scenarios (in this work we tried only 4 most typical) can also be configurable.

Second proposed improvement is related to modeling random factors using a certain distri-

bution. We have shown that RSS deviations are best described by different distributions and

parameters at different distances (at the same time having notable similarities within different

spaces and placement scenarios). During the evaluation of a particular path loss, one could

check the distance between TX and RX and use a distribution from a corresponding distance

interval instead of using the same standard normal distribution in every case. Another ap-

proach is to keep the existing Xσ random variable but allow the distribution parameters (mean

µ and standard deviation σ) to be generated every time with their corresponding distributions.

For example, for scenarios studied in this work µ and σ can be generated with Lognormal and

Rayleigh distributions, respectively.

Although in this work we considered only accessible office environments without mobility,

the proposed analysis methodology and model improvements could be applicable to other

environments, such as industrial, characterized by high noise level and presence of various

mechanical obstacles. This would require additional measurements, but would highly con-

tribute to achieving more accurate results in using a WSN simulator during the design. Overall,

this study can be beneficial for improving the channel models (and using them to simulate

the designed system in different environments and conditions) as well as for configuring a

particular system within a particular environment.

We have currently implemented the proposed improvements in ARCHEX for the log-distance

and multi-wall models, which are both parts of our wireless library. In particular, while reading

the SVG file with the information about the deployment area and the candidate locations of

nodes, the tool is able to analyze each pair of nodes and determine their mutual placement. It

then classifies these placements according to a set of scenarios, such as the ones presented

here (e.g., single wall, reciprocal walls) and assign a corresponding PLE value to the link, which

is then used for computing the path loss of the latter. Also, the distance between the nodes is

computed and used to select a probability distribution and its parameters for each particular

case in order to more accurately capture the random part of the log-distance model. The

distributions are currently selected according to the numerical results from our measurement

campaign [64], but can also be extended with datasets obtained from other environments,

e.g., industrial. One of our future work directions is related to using the latter in a loop with

simulation for a more precise evaluation of network behavior, similarly to [87]. Corresponding

simulator could benefit from the improved channel model as well.

139



Chapter 6. Optimized Topology Selection and Component Sizing for Wireless Networks

6.4 Related Work

The problem of optimizing device placement and connectivity in wireless networks is well stud-

ied [130]. State-of-the-art approaches include simulated annealing [24], genetic algorithms [61,

52], tabu search [111], nonlinear optimization [26, 111] and MILP-based techniques [106, 108,

7, 38]. With respect to these approaches, our mapping constraints can capture a richer set

of requirements and allow for component sizing in addition to topology selection. Many pa-

rameters that were fixed in previous formulations (e.g., transmit power, antenna gain, current

consumption) can now be selected based on a library of components. The user can also

specify the types of components and their communication rules, thus handling a broader

category of designs.

The goal of the MILP optimization problem presented by Amaldi et al. [7] is to jointly select the

node placement and the channel assignment, while minimizing the installaton cost and satis-

fying the connectivity requirements. Multiple radio interfaces, multiple frequency channels

and interference are taken into account. The authors also propose two polynomial heuris-

tic algorithms, which allow them to tackle larger problem instances (over 50 nodes), while

achieving up to 5x faster execution times compared to solving monolithic MILP problems. In

particular, one of the algorithms suggests to solve a smaller MILP problem, without link capac-

ity constraints, in a loop with feasibility checking routine and learning new routing constraints.

In other words, their approach is similar to our iterative optimization technique. Differently

from [7] we account for link quality metrics (e.g., RSS, BER) and energy consumption of the

nodes. At the same time we neglect, in particular, channel assignment. Yet, these constraints

can be easily incorporated in our formulation.

Pinto et al. [106] proposed a generic MILP formulation for synthesizing wireless network

architectures for building automation and control. The goal is the minimization of the cost of

network nodes under a set of topological, link utilization and link quality (end-to-end delay,

packet error rate) constraints. More recently, Puggelli et al. [108] extended the formulation

from [106] with different routing patterns (e.g., unicast, multicast) and power consumption

constraints for indoor wireless sensor networks. They explore a broader design space and

solve a more complex optimization problem. With respect to [106, 108], our approach is

more general, i.e., it not only supports the formulations these previous works, but also other

concerns (e.g., lifetime constraints, localization constraints). Overall, our approach is superior

both in network size and the dimensionality of the design space, which now includes the

sizing of network components (e.g., choosing the transmission power of devices, selecting

external antennas and so on).

This work differs from efforts aiming at polynomial-time approximate algorithms to solve

the NP-hard exploration problem [108, 49, 58], since it rather focuses on more compact

approximate encodings that can still leverage the empirical advances of state-of-the-art MILP

solvers. For example, according to the results provided by Pugelli et al. [108], their MILP

formulation becomes impractical, i.e., no solution is found within a timeout, for networks of

more than 50 end devices. Therefore, they propose a polynomial-time heuristic algorithm in
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place of the NP-hard MILP problem that applies Dijkstra’s shortest path routine for synthesis

of large networks that cannot be handled by exact MILP formulations. Instead, in our work

we use Yen’s algorithm [128], which is a generalization of Dijkstra’s algorithm, to symbolically

generate compact MILP formulations of network path constraints that can scale to hundreds

of nodes.

Some works solve the synthesis problem using techniques different from MILP. For example,

the Wi-Design tool [83] uses agent-based optimization algorithm for finding optimal positions

of WSN routers and sinks. Candidate locations for these devices are not specified by the

designer as in most of other works, but estimated using a variation of a self-growing natural

gas algorithm. In [52] a genetic algorithm is used for WSN placement and topology planning.

In contrast to other problems, the objective is to find optimal locations for sensors and

routers, while only the sink position is fixed. The optimization is in a loop with the WSNet

simulator [25], which verifies the network characteristics, e.g., latency, packet drop rate and

network lifetime. With respect to our approach, both [83, 52] are able to conduct a more

careful and precise search of the best node placement (any location can be chosen as opposed

to a discrete selection among candidate locations). Such exhaustive search, however, can

become extremely time-consuming for large networks, thus making corresponding design

problems intractable.

A recent MILP-based approach has been proposed for generating cost-effective hardware

configurations of IoT devices [45]. The authors propose an optimization problem formulation

for selecting components of the hardware platform that are compatible, e.g., use the same

interfaces (UART, analog) and have sufficient number of pins. Hardware selection is one

step in the proposed holistic system for rapid development of IoT applications, which also

includes automatic software generation. Overall, this system operates on a level of single IoT

devices, but not on the network level. Our methodology can be applied for solving hardware

configuration problems, yet it also captures a higher, network-wide level of abstraction and

allows to express non-functional properties (e.g., timing, reliability).

Satisfiability modulo theory (SMT) based encodings have also been recently proposed to find

feasible solutions for wireless network scheduling problems [33]. Our work is different since it

targets optimal solutions. While SMT-based techniques have been recently investigated for

solving optimization problems [74], their scalability is, however, often limited for problems

with a large number of real constraints.

Finally, our approach is complementary and can be combined with simulation-based design

exploration [30, 124], as it provides system-level correctness guarantees that can be used to

reduce the number of simulations needed for the exploration. A similar idea is leveraged by

Moin et al. [87] for the optimized design of a human intranet network. In their approach,

a mixed integer linear program generates candidate network architectures under coarse

energy constraints, which are then checked by a discrete-event network simulator under

reliability constraints. Simulation results generate lower bounds on the power consumption,

which are added to the MILP to prune the search space and achieve faster convergence. Our
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methodology can be applied on the optimization step of [87] and provide more expressiveness

and generality to the existing formulation with additional types of constraints and sizing of

network components.

6.5 Conclusions

Our results demonstrate the applicability of our optimized mapping approach to large-scale

wireless network designs, which are a crucial component of today’s IoT applications. En-

hancing the ARCHEX framework with additional functionalities, such as channel models and

floor plan support, allowed us to extend the list of application requirements with the ones

typical for the wireless networking domain, and to use the methodology for corresponding

design problems. In particular, we were able to synthesize cost-effective topologies and select

the components of a data collection wireless sensor network under link quality, timing and

lifetime constraints. Moreover, the reliability of the topology was also considered by adding

redundancy to every network path using routing constraints. In the second case study, we gen-

erated node placements and chose the components of a localization network, while ensuring

that the mobile target is reachable by a minimum of 3 anchors in a set of its possible locations.

Most of the requirements were captured using the path variables that belong to the generic

basis of our exploration problem formulations. Indeed, the presence or absence of a node or

an edge in a particular network route is an important information for computing the end-to-

end delay of a route, energy consumption of a node and other properties. However, general

encoding of network paths requires their full enumeration. For the network sizes in the range

of our examples, such enumeration leads to heavy and impractical problem formulations with

millions of MILP constraints.

Our methodology provides a scalable solution for topology synthesis problems. To decrease

their complexity, we applied the approximate encoding of network paths, as proposed in

Algorithm 1. As a result, we obtained more compact (several orders of magnitude smaller)

MILP formulations and were able to solve large problems in reasonable time. A small number

of “best” path candidates proposed by the algorithm efficiently guides the solver to the most

promising portion of the design space. Moreover, the size of this space and the tradeoff

between optimality and execution speed can be controlled by tuning the value of the K ∗

parameter. In our experiments, even a small number of proposed candidate paths (e.g.,

K ∗ = 3) led to solutions that are more cost-effective than greedy heuristic solutions for topology

synthesis. Also, the solver guarantees the optimality of the proposed solution in the reduced

design space. Larger values of K ∗ give more improvements in the quality of the solution, at a

higher price in terms of execution time, while the latter also depends on the size of the network

template. As discussed in Section 6.2.3, a systematic strategy can be applied to find the best

K ∗ for a given network considering the available timeframe of the project.

Being significantly smaller with respect to full enumeration of network paths, the size of

the exploration problems reported in this chapter is still very large. For example, different
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formulations for the data collection network amount to tens or hundreds of thousands of

constraints and variables. Manual handling of such formulations is extremely difficult, if not

impossible. In this situation, the advantage of using the pattern-based language, provided by

ARCHEX, is again evident.

The assesment of properties and the statistical characterization of the 2.4 GHz radio channel,

conducted based on an extensive measurement campaign in indoor office spaces, allowed us

to identify interesting regularities in the behavior of wireless signals in these environments.

We then proposed two improvements for the conventionally used log-distance channel model:

adaptive assignment of the path loss exponent depending on the mutual placement of TX and

RX nodes, and using different probability distributions for estimating the random attenuation

effects at different distances between the nodes. This is a first step towards the integration

of our methodology with an accurate network simulator, which will also incorporate the

proposed improvements in its channel model.

In the scope of cyber-physical systems, case studies presented in this chapter tackle the

design of the communication infrastructure, i.e., the “cyber” part. However, we observe

that the graph-based representation of the network topology is generic, i.e., other types of

components, such as the ones composing the physical part of the system, can be easily

integrated in the same formulation. For example, a set of actuators can be added to a WSN

design problem by introducing additional component types and extending the library. An

actuator can represent a physical component (e.g., hydraulic, electric) or an interface to the

latter. In turn, some edges of the architecture graph can be mapped to wireless links, while

others may represent physical connections (e.g., wires, valves). Our methodology allows

users to co-design different subsystems within the same high-level architecture by using

multiple functional flows. For instance, one could use a WSN as a communication and

control infrastructure of a manufacturing system, presented in Chapter 5. The possibility of

simultaneously selecting and interconnecting both physical and electronic components of a

CPS at a conceptual level of design, while meeting the system-level requirements of the two

subsystems and optimizing the overall cost, brings a large number of potential applications

for the proposed methodology.

The work presented in this chapter suggests several promising future work directions:

• Iterative optimization with simulation in the loop. Proven to be efficient in several recent

works [40, 87], lazy coordination of a MILP solver with a simulation model can enable

accurate verification of the generated architecture. Furthermore, simulation results

can be used by a learning function to propose new constraints for the MILP solver in

order to guide it towards a solution that meets certain requirements. In particular, in

wireless sensor networks, careful estimation of power consumption of nodes is of crucial

importance. Therefore, network topologies generated by ARCHEX can be verified with a

power-aware simulator, such as PASES [84]. If the simulation outcome is not satisfying,

then the lifetime constraints of the optimization problem have to be automatically

tightened. Moreover, similarly to [40], our topology synthesis methodology can be
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augmented with simulation-based design space exploration and sizing of continuous

network properties, such as protocol parameters.

• Investigation of tradeoffs across HW/SW boundaries. Several system parameters in

current WSN specifications can be calibrated in future work within the same exploration

problem. For example, the parameters of a network protocol, such as duty cycle, epoch

(period for sending packets), number and length of slots in a superframe of a TDMA

protocol, packet size, and others are currently fixed in the specification. Instead, they can

be added to the formulation as real or integer decision variables. Current expressions

of network requirements may need additional linearization, but in general this would

enable the sizing of software parameters. Alternatively, if some expressions become

impractical for being added to the MILP problem, the sizing can be performed with

other tools, including simulators.

• Joint optimization of wireless infrastructure and physical plant. More realistic and

complex CPS designs can be supported by combining the features of the proposed

methodology, presented in Chapters 5 and 6. For example, same architecture template

can include both wireless network components and a physical system, such as a pro-

duction line. In turn, edges of the same template can be mapped to different types of

connections (e.g., wireless links for the network, conveyors for the production line, some

physical connectors or actuators for interfacing the two). Synthesized architecture can

then include both the interconnections and the machinery of the physical part, and the

topology of the communication network. Novel encoding algorithms may be proposed

to keep the complexity of such versatile formulations at a reasonable level.

• Additional improvements of the channel model. One of our goals is the integration

of the proposed channel model improvements to the PASES simulator. Overall, the

presented study of the wireless channel is a good starting point, from which we can

move our investigation to real industrial environments to draw more conclusions aboth

the WSN radio channel and further improve the models. Such environments are typically

characterized by high electromagnetic pollution, usually at low frequencies. Also, no-

line-of-sight (NLOS) conditions are to be studied due to the presence of strong multipath

effects, which may play a dominant role in signal path loss. Furthermore, movement

scenarios are to be considered in both LOS and NLOS. From the latter we expect lower

temporal stability and coherence time of the channel, in particular, due to Doppler

effects related to moving object or environment.

• Localization accuracy constraints. Our current localization constraints (reachability of

every test point by a minimum number of anchor nodes) affect the quality of localization

only in an implicit way. There are some research efforts that analytically characterize

the quality of localization [127] and the ranging error from RSS measurements [34].

The possibility of using such expressions as constraints in our formulation would allow

us to derive explicit bounds on the accuracy of localization and, therefore, has to be

investigated.
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This chapter summarizes the contributions of the research made in this dissertation. We also

suggest promising research directions for future work.

7.1 Conclusions

By joining the cyber and the physical, and by forcing them to cooperate, we attempt to establish

a more controllable, reliable, cost-effective, safe and connected surroundings in different

spheres of our lives. Embedded electronics becomes pervasive, and its tight integration with

modern mechanical and other physical systems shows promise of making the resulting holistic

cyber-physical system more capable and efficient. Indeed, CPS are expected to outperform

their predecessors, in which electronic and physical elements are kept separated. However, the

complexity and the heterogeneity of CPS is increasing their design and verification challenges.

Complex designs, for example, in the automotive and avionic domains, are typically carried

out by multiple companies, teams and suppliers. Being well-known and addressed for years

by different industries, nowadays design complexity is exhacerbated with the new challenges

intrinsic to CPS. Design decisions made for different subsystems directly affect each other,

while an error introduced early in the design may stay undetected for a long time and may lead

to severe vulnerabilities in the system realization. A confident and efficient design process

naturally suggests raising the level of abstraction, so that the efforts of different design teams

can be synchronized, coordinated and constrained by a set of system-wide requirements.

In this dissertation we seek to advance the state of the art in cyber-physical system design

by addressing the challenges of one of its earliest steps, i.e., concept design. We introduced

a methodology for the exploration of high-level CPS architectures to efficiently investigate

and prune the broad search space of interconnections of system components, and select the

one that better fulfills the requirements. We apply optimization techniques, such as mixed

integer linear programming, to create exploration problem formulations that can leverage the

empirical advances of state-of-the-art information theoretic solvers to generate cost-effective

system architectures that are correct by construction. Our formulation is capable of capturing

a variety of high-level properties, such as reliability, workload, timing and energy, while

abstracting complex dynamic characteristics by replacing them with steady-state or worst-
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case approximations. Following the platform-based design paradigm, our novel formulation

keeps the implementation and application spaces separated. That is, topology selection

problem (number of components and their interconnections) is decoupled from the mapping

problem (choosing components from a domain-specific library). In addition, we developed a

set of algorithms for scalable encoding and solving of exploration problems, and an extensible

framework, ARCHEX 2.0, to facilitate the use of the proposed methodology by CPS designers.

In Chapter 2, based on a graph-based representation of the architecture, we introduced a

common semantic domain as a set of variables and generic MILP constraints that capture the

main design decisions on high-level architectures. These decisions include selecting the num-

ber of components and their direct connections (topology configuration), the paths between

source and destination components (routing), and the association of all components and

connections to library elements (mapping). The resulting basis of the exploration problem can

be used to derive expressions that capture different system-level properties and requirements.

All of them are built on top of the basis, sometimes with an addition of domain-specific and

auxiliary variables.

Our architecture exploration methodology, presented in Chapter 3, consists of design specifi-

cation, encoding, solving and analysis steps. The former one is fortified by the language of

patterns, i.e., short expressions that reflect the requirements expressed in natural language

and can be leveraged to write compact and comprehensive specifications. The encoding part

uses the generic basis, proposed in Chapter 2, for instantiating application requirements. It

also includes a set of algorithms for generation of approximate encoding of some entities and

properties of the architecture, such as network paths and reliability constraints. Two different

techniques are used to solve exploration problems: a monolithic optimization with all possible

constraints, and a lazy coordination of a MILP solver and a theory solver that verifies a certain

property (e.g., reliability) and guides the solver towards a feasible solution. Finally, a set of

analysis techniques, e.g., reliability, timing and workload, are used to verify the corresponding

aspects of the architecture.

In Chapter 4 we presented ARCHEX 2.0, an extensible framework for the exploration of CPS

architectures that supports the proposed methodology. ARCHEX leverages an extensible set of

patterns to facilitate the problem formulation and debugging. Pattern-based specifications are

orders of magnitude smaller than automatically generated MILP formulations. The software

structure of the framework relies on a set of abstract classes and reusable data structures,

so that it can be customized to different CPS domains. In particular, we presented a large

extension of the toolbox, which allows it to support topology synthesis problems for wireless

networks.

The disseration also provides an extensive numerical evaluation of the proposed methodology

on a set of case studies from different CPS domains. In Chapter 5, we demonstrated the

effectiveness of our approach on two reliability-driven industrial design examples: aircraft

electrical power distribution network and reconfigurable manufacturing system. Both of them

require minimum-cost architectures while meeting the interconnection, balance, workload,
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timing, safety and reliability requirements. The performance and the quality of both mono-

lithic and iterative solving algorithms was investigated. Our results confirmed that both the

formulation and the algorithms can be applied to complex industrial designs, with realistic

system architectures being synthesized in reasonable time (from several seconds to several

minutes). Our tests also provided an empirical evidence of the efficiency of our mapping

mechanism with respect to previous works [99, 12]. Increasing the size of components library

only led to a logarithmic growth of problem complexity, compared to a quadratic growth when

using the approach from [99, 12].

In Chapter 6, we focused on a significantly different domain, wireless networks, for syn-

thesizing reliable and energy-efficient topologies under routing, link quality and lifetime

constraints. Two relevant case studies for wireless sensor networks have been presented:

data collection and localization. In particular, we demonstrated the capabilities of the pro-

posed path encoding algorithm to generate compact, yet approximate, MILP formulations

that allow the large-scale network topologies to be synthesized in reasonable time and with

high cost-effectiveness. The algorithm can be calibrated to explore the tradeoff between cost

and complexity. Last but not least, we proposed a set of improvements for the conventional

channel models (log-distance, multi-wall) used in network design tools. These improvements

help to capture the operating conditions of network designs with greater accuracy and, apart

from ARCHEX, can be also integrated to network simulation tools, which is planned in future

work.

Our experiments confirmed the following important characteristics of the proposed architec-

ture exploration approach:

• Usability, facilitated by the pattern-based language for requirement specification.

• Expressiveness, allowed on the theoretical side by the generic basis of the exploration

problem, and on the practical side by a set of patterns. As a result, a variety of heteroge-

neous requirements can be captured.

• Extensibility and reusability, due to the modular structure of the ARCHEX framework. It

is possible to reuse and/or customize same requirement encodings in different domains.

• Scalability, which is provided by efficient algorithms for encoding and solving explo-

ration problems.

With respect to existing satisfiability- and optimization-based approaches for concept design

of CPS architectures, such as [101, 12, 108, 103], our approach has demonstrated superior

expressiveness by being able to capture more design concerns. In particular, we address

more general problems by allowing the sizing of components. That is, many parameters,

fixed in previous formulations, can now be selected from a library of components. Similarly,

by being more expressive, our techniques can replace the discrete optimization stages in

hybrid optimization/simulation approaches, e.g., [40, 87]. The methodology can also be

complementary to existing simulation-based solutions [23, 17, 47] and tools [107, 30].
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7.2 Future Work

Inspired by the extensibility of the proposed architecture exploration methodology and by

design examples shown in this thesis, we have outlined several promising and interesting direc-

tions of future work and research. We believe that our approach can be more tightly integrated

into the cross-layer design flow of CPS by interfacing with preceding and succeeding steps via

other existing tools. Also, we outline a set of potential applications to apply the methodology,

which can also be motivating for improving and extending the existing formulation.

7.2.1 Theory and Algorithms

On the theoretical side, one could concentrate on enriching the set of existing supported

requirements which would extend the methodology to a broader class of applications. For

example, scheduling, reconfigurability and network coverage constraints can be studied. Also,

HW/SW boundaries can be investigated at a high level, e.g., selecting a network protocol or

a localization function, as well as sizing of software parameters, e.g., duty cycle, packet size

or number of retransmissions. Finally, certain properties of the architecture, such as power

flow, battery discharge, switching of contactors/valves or reconfiguration of a manufacturing

line, can be captured in their dynamics. Encoding of such properties as mixed integer linear

expressions is possible by discretizing the time scale, selecting the time horizon and sampling

time, and capturing the property values at certain moments in time. The resulting problem

will then include the optimization and sizing of dynamic properties and can be solved using

the receding horizon approach [78]. The possibility of applying the proposed techniques for

redesign/reconfiguration in runtime (on the fly) can be investigated as well.

One more theoretical direction is related to devising efficient approximations for heavy nonlin-

ear constraints. An approximate algebra has been proposed in [96] for encoding of reliability

constraints. Similarly, approximations with mathematically proven theoretical bounds would

be advantageous, for example, for certain physical properties, which can be expressed only as

piecewise linear functions. The latter is a universal technique able to replace any expression,

however, the accuracy of such approximation highly depends on the number of selected linear

intervals. The complexity of the formulation can also be very sensitive to the latter.

On the side of the algorithms, the development of new theory solvers and analysis techniques

to be used within iterative optimization schemes would be interesting. In contrast with afore-

mentioned approximate encodings, which facilitate monolithic problem formulations, here

the goal is to decouple complex constraints and leverage conflict-driven learning routines for

guiding the solver towards feasible solutions. For example, procedures for timing, scheduling

and energy consumption constraints can be investigated.

Similarly, iterative optimization techniques incorporating simulation are a promising direction

of future research. Simulation models can be used for verification of the final architecture [108],

learning new constraints for the MILP formulation [87], as well as for design space explo-

ration [40]. Using simulation in a loop with the proposed architecture exploration approach
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would further increase the breadth of the design space, since more system properties can be

captured by the models. This also has the potential of increasing the efficiency and the scala-

bility of existing techniques, since simulation models can evaluate “heavy” system properties,

otherwise encoded as a part of a complicated MILP problem. Finally, the methodology that

effectively combines optimization-based and simulation-based methods would cover more

steps in the holistic CPS design flow.

In our approach, as well as in other existing ones [12, 40, 87], iterative optimization, both

with external theory solvers and simulators, leverages greedy strategies for manipulating the

MILP formulation. That is, if the generated architecture does not meet the requirements, new

constraints are added to the formulation. However, if the next result is worse than previous

(or infeasible), recently added constraints are not removed in an attempt to backtrack and try

out another strategy. Similar to SAT/SMT solvers, a push-pop mechanism can be applied in

learning strategies to cancel the effect of wrong actions that compromise the quality and the

feasibility of the architecture. Combined with the domain-specific knowledge, backtracking

mechanisms will enable more powerful and reliable iterative optimization schemes.

Another algorithmic improvement would be to devise a set of strategies for choosing K ∗, i.e.,

the number of proposed candidate path implementations for every required network route

in Algorithm 1, for a given system/network. Apart from the one discussed in Section 6.2.3,

which is related to conducting a systematic search for different values of K ∗, an alternative

and more general approach would be to integrate our path pruning techniques in a variation

of a branch-and-bound algorithm. The possibility to branch on a set of selected paths would

allow to estimate and compare the best bounds of these selections and efficiently prune the

search space. In contrast with the current version of the pruning method, which can be seen

as an approximation, this would provide optimality guarantees and allow to calculate the

optimization gap.

Finally, it would be very interesting to compare the capabilities currently provided by the

methodology with the Optimization Modulo Theories approach [116, 28] and related tools [117,

74, 18]. OMT is a novel and very promising technology, from which we expect an advantage of

better expressiveness and a drawback of limited scalability for handling a large number of real

constraints. However, no applications to concept design of CPS, as well as for CPS architecture

exploration in general, have been presented so far. Overall, symbolic optimization with SMT

solvers has a great potential, and one has to investigate its capabilities of solving large design

problems.

7.2.2 Tools

One potential improvement of the ARCHEX framework is related to debugging optimization

problems. At the moment, if the formulation is infeasible, the MILP solver only provides the

information about a single constraint that caused the inconsistency. Users are able to debug

the problem at a higher level of abstraction, i.e., by adding or removing certain patterns from
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the specification. In general, it allows them to determine the requirement that led to infeasibil-

ity of the whole problem. However, many patterns internally translate the requirements to a

large number of MILP constraints, e.g., hundreds or thousands. Moreover, multiple properties

can be captured within the same pattern. Therefore, the possibility of providing a minimal set

of inconsistent constraints, i.e., the unsatisfiability core, is highly desirable. More importantly,

it should be possible to trace back these constraints by associating them to particular require-

ments, so that the designer could understand the reason of inconsistency. Such information

would also be helpful to locate potential errors introduced during implementation of new

constraints in ARCHEX.

Interfacing ARCHEX with other design exploration tools and problem solvers, such as sim-

ulators or solvers for nonlinear (e.g., convex) optimization problems, is another important

direction. This would allow the proposed methodology to be integrated to different design

flows. Being capable of generating the output (system architecture) in a format that is accepted

by other tools is an important step towards interoperability, which is still lacking between CPS

design tools.

Finally, extending the proposed pattern-based language with new supported requirements

would increase the number of applications, where ARCHEX can be directly applied. Also,

comparing the performance and the capabilities of different MILP toolboxes for solving archi-

tecture exploration problems could be helpful for providing usage guidelines for designers.

Overall, the improvements listed above can facilitate the dissemination of the ARCHEX frame-

work in different communities and industries.

7.2.3 Applications

Our generic formulation allows us to represent both the embedded system (or network) and

the physical plant as a single graph. In this graph, nodes can be associated with components

of both types, while edges can be mapped to different communication means, e.g., wireless

links, contactors, wires or valves. For instance, a sensor can be connected to a base station via

a wireless channel, and to a robotic device with a physical connector. In turn, the robot can

be connected to different mechanisms (e.g., machines, conveyors) with some other interface.

Therefore, the architecture template in our methodology can include different infrastructures

and subsystems (e.g., mechanical, communication). The functionality and the capabilities of

ARCHEX, demonstrated in Chapters 5 and 6 can be jointly applied to handle more complex

and realistic designs. For example, the placement of the machinery of a reconfigurable

manufacturing system, studied in Chapter 5, can be optimized to occupy the minimum

surface of the shop floor. The template of the RMS architecture can also include a subgraph

that represents a wireless networking infrastructure that monitors the state of the machines

and issues control commands (e.g., changing operation modes, redistributing product flows).

Novel encoding algorithms and synthesis techniques may be proposed to keep the complexity

of such versatile formulations at a reasonable level.
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Existing case studies also suggest several directions of future work. They include advanced

timing and reconfigurability requirements for electrical power networks and manufacturing

systems, control patterns, support of multiple functional flows (which is also necessary for

complex architectures discussed above), localization accuracy requirements, calibration of

software parameters (e.g., of a network protocol) and iterative optimization schemes that

incorporate theory solvers and simulation in the loop. These improvements are discussed in

detail in Sections 5.4 and 6.5.

Finally, several new applications can be suggested. In particular, smart grid [132] is a rep-

resentative class of complex cyber-physical systems. Interconnection and power balance

requirements from the aircraft power system design example can be similarly applied to a

smart grid case study. Routing and reliability constraints can also be enforced. The large scale

of a power grid network prompts to use our algorithm for approximate encoding of network

paths, i.e., proposing several candidate paths for every electrical line, as well as iterative op-

timization schemes for efficiently solving exploration problems. Additionally, existing case

studies, such as aircraft environmental control system [40], fuel management system (Chapter

4) and body area network [87], can be elaborated.
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