8,060 research outputs found

    An introductory digital design course using a low–cost autonomous robot

    Get PDF
    This paper describes a new digital design laboratory developed for undergraduate students in this electrical and computer engineering curriculum. A top-down rapid prototyping approach with commercial computer-aided design tools and field-programmable logic devices (FPLDs) is used for laboratory projects. Students begin with traditional transistor–transistor logic-based projects containing a few gates and progress to designing a simple 16-bit computer, using very high-speed integrated circuits hardware description language (VHDL) synthesis tools and an FPLD. To help motivate students, the simple computer design is programmed to control a small autonomous robot with two servo drive motors and several sensors. The laboratory concludes with a team-based design project using the robot

    Virtual Prototyping for Dynamically Reconfigurable Architectures using Dynamic Generic Mapping

    Get PDF
    This paper presents a virtual prototyping methodology for Dynamically Reconfigurable (DR) FPGAs. The methodology is based around a library of VHDL image processing components and allows the rapid prototyping and algorithmic development of low-level image processing systems. For the effective modelling of dynamically reconfigurable designs a new technique named, Dynamic Generic Mapping is introduced. This method allows efficient representation of dynamic reconfiguration without needing any additional components to model the reconfiguration process. This gives the designer more flexibility in modelling dynamic configurations than other methodologies. Models created using this technique can then be simulated and targeted to a specific technology using the same code. This technique is demonstrated through the realisation of modules for a motion tracking system targeted to a DR environment, RIFLE-62

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    Developing large-scale field-programmable analog arrays for rapid prototyping

    Get PDF
    Field-programmable analog arrays (FPAAs) provide a method for rapidly prototyping analog systems. While currently available FPAAs vary in architecture and interconnect design, they are often limited in size and flexibility. For FPAAs to be as useful and marketable as modern digital reconfigurable devices, new technologies must be explored to provide area efficient, accurately programmable analog circuitry that can be easily integrated into a larger digital/mixed signal system. By leveraging recent advances in floating gate transistors, a new generation of FPAAs are achievable that will dramatically advance the current state of the art in terms of size, functionality, and flexibility

    OPTIMAL AREA AND PERFORMANCE MAPPING OF K-LUT BASED FPGAS

    Get PDF
    FPGA circuits are increasingly used in many fields: for rapid prototyping of new products (including fast ASIC implementation), for logic emulation, for producing a small number of a device, or if a device should be reconfigurable in use (reconfigurable computing). Determining if an arbitrary, given wide, function can be implemented by a programmable logic block, unfortunately, it is generally, a very difficult problem. This problem is called the Boolean matching problem. This paper introduces a new implemented algorithm able to map, both for area and performance, combinational networks using k-LUT based FPGAs.k-LUT based FPGAs, combinational circuits, performance-driven mapping.

    Modeling and Design of Digital Electronic Systems

    Get PDF
    The paper is concerned with the modern methodologies for holistic modeling of electronic systems enabling system-on-chip design. The method deals with the functional modeling of complete electronic systems using the behavioral features of Hardware Description Languages or high level languages then targeting programmable devices - mainly Field Programmable Gate Arrays (FPGAs) - for the rapid prototyping of digital electronic controllers. This approach offers major advantages such as: a unique modeling and evaluation environment for complete power systems, the same environment is used for the rapid prototyping of the digital controller, fast design development, short time to market, a CAD platform independent model, reusability of the model/design, generation of valuable IP, high level hardware/software partitioning of the design is enabled, Concurrent Engineering basic rules (unique EDA environment and common design database) are fulfilled. The recent evolution of such design methodologies is marked through references to case studies of electronic system modeling,simulation, controller design and implementation. Pointers for future trends / evolution of electronic design strategies and tools are given

    A novel system architecture for real-time low-level vision

    Get PDF
    A novel system architecture that exploits the spatial locality in memory access that is found in most low-level vision algorithms is presented. A real-time feature selection system is used to exemplify the underlying ideas, and an implementation based on commercially available Field Programmable Gate Arrays (FPGA’s) and synchronous SRAM memory devices is proposed. The peak memory access rate of a system based on this architecture is estimated at 2.88 G-Bytes/s, which represents a four to five times improvement with respect to existing reconfigurable computers

    Using CamiTK for rapid prototyping of interactive Computer Assisted Medical Intervention applications

    Full text link
    Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc
    • 

    corecore