320 research outputs found

    A Bibliography of NPS Space Systems Related Student Research, 2013-2022

    Get PDF
    Dudley Knox Library, Naval Postgraduate School.Approved for Public Release; distribution is unlimite

    CIRA annual report FY 2010/2011

    Get PDF

    Design, Integration, and Evaluation of IoT-Based Electrochromic Building Envelopes for Visual Comfort and Energy Efficiency

    Get PDF
    Electrochromic glazing has been identified as the next-generation high-performance glazing material for building envelopes due to its dynamic properties, which allow the buildings to respond to various climate conditions. IoT technologies have improved the sensing, communication, and interactions of building environmental data. Few studies have been done to synthesize the advancements in EC materials and building IoT technologies for better building performance. The challenge remains in the lack of compatible design and simulation tools, limited understanding of integration, and a paucity of evaluation measures to support the convergence between the EC building envelopes and IoT technologies. This research first explores the existing challenges of using EC building envelopes using secondary data analysis and case studies. An IoT-based EC prototype system is developed to demonstrate the feasibility of IoT and EC integration. Functionalities, reliability, interoperability, and scalability are assessed with comparisons of four alternative building envelope systems. Nation-wide evaluations of EC building performance are conducted to show regional differences and trade-offs of visual comfort and energy efficiency. A machine learning approach is proposed to solve the predictive EC control problem under random weather conditions. The best prediction models achieve 91.08% mean accuracy with the 16-climate-zone data set. The importance of predictive variables is also measured in each climate zone to develop a better understanding of the effectiveness of climatic sensors. Additionally, a simulation study is conducted to investigate the relationships between design factors and EC building performance. An instantaneous daylight measure is developed to support active daylight control with IoT-based EC building envelopes

    CIRA annual report 2007-2008

    Get PDF

    CIRA annual report FY 2011/2012

    Get PDF

    Affordable identification and modelling of uncertain design specifications when introducing new technologies in space applications

    Get PDF
    When introducing new technologies in space products, both the uncertainties regarding technology feasibility and the way in which the technology affects the product development process hinder the early establishment of appropriate engineering specifications. Failing to establish product specifications during conceptual stages leads to problems discovered during later phases of the product development process, when design and process changes are the most expensive.This thesis proposes a digital holistic design platform and a method of constraints replacement for a cost- and time-efficient identification of specification uncertainties when designing space products with new technologies. The digital platform and methods have been developed and tested through industrial case studies featuring the introduction of new technologies for on-orbit applications. Most of these studies were performed in the context of, but are not limited to, the introduction of additive manufacturing.The platform and proposed constraints replacement method are based on function modeling strategies (for modeling product architecture and requirements during conceptual design phases), coupled with activity modeling strategies (for modeling the impact of product architecture on product development schedules and costs). The platform and method enable the identification and assessment of unknown uncertainties, thereby reducing the likelihood of expensive redesign processes during later development phases.Moreover, they enable the inclusion of multidisciplinary design trade-offs during conceptual stages and encourage the establishment of a culture of uncertainty seeking and effective data documentation and transfer

    Bit Bang 7: Future of Energy

    Get PDF
    This book is the 7th in the Bit Bang series of books produced as multidisciplinary teamwork exercises by doctoral students participating in the course Bit Bang 7: Future of Energy at Aalto University during the academic year 2014–2015. The course aims at fostering teamwork and multidisciplinary collaboration, as well as providing participants with a global, futurecentric perspective on the energy sector. The growing global demand for energy and diminishing natural resources are driving the development of eco-efficient energy sources, new ways of doing business, and designing our living environment. Bit Bang 7 addresses the topic of energy sources and technologies from the perspective of their economic, environmental and social sustainability. The course elaborates on the interconnectedness of these phenomena, and links them to possible future scenarios, global megatrends and ethical considerations. Will we see disruptive changes in our energy future? Can we impact consumption patterns, ways of doing business, and our way of life? Are we creating a sustainable future for the generations to come? Working in teams, the students set out to answer questions related to the changing energy sector and to brainstorm radical scenarios of what the future could hold. This joint publication contains articles produced as teamwork assignments for the course, in which the students were encouraged to take novel and radical views on the future of energy. The Bit Bang series of courses is supported by the Multidisciplinary Institute of Digitalisation and Energy (MIDE). Previous Bit Bang publications are available from http:/mide.aalto.fi

    The Boston University Photonics Center annual report 2009-2010

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center for the period from July 2009 through June 2010. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This report summarizes activities of the Boston University Photonics Center (BUPC) during the period July 2009 through June 2010. These activities span the Center’s complementary missions in education, research, technology development, and commercialization. In education, twenty-three BUPC graduate students received Ph.D. diplomas. BUPC faculty taught thirty-one photonics courses. Five graduate students were funded through the Photonics Fellowship Program. BUPC supported a Research Experiences for Undergraduates (REU) site in Photonics, which hosted summer interns in a ten-week program. Each REU student presented their research results to a panel of faculty and graduate students. Professors Goldberg and Swan continued their work with K-12 student outreach programs. Professor Goldberg’s Boston Urban Fellows Project started its sixth year. Professor Swan’s collaborative Four Schools for Women in Engineering program entered its third year. For more on our education programs, turn to the Education section on page 67. In research, BUPC faculty published journal papers spanning the field of photonics. Twelve patents were awarded to faculty this year for new innovations in the field. A number of awards for outstanding achievement in education and research were presented to BUPC faculty members. These honors include NSF CAREER Awards for Professors Altug, Dal Negro and Reinhard. New external grant funding for the 2009-2010 fiscal year totaled 21.1M,including21.1M, including 4.0M through a Cooperative Agreement with the U.S. Army Research Laboratory (ARL). For more information on our research activities, turn to the Research section on page 24. In technology development, the Department of Defense (DoD) continued to support the COBRA prototype systems. These photonics-technologies were pioneered by BUPC faculty and staff and have been deployed for field test and use at the United States Army Medical Research Institute for Infectious Diseases. New technology development projects for nuclear weapon detection, biodosimetry and terahertz imaging were launched and previously developed technologies for bacterial and viral sensing advanced toward commercial transition. For more information on our technology development pipeline and projects, turn to the Technology Development section on page 54. In commercialization, the business incubator continues to operate at capacity. Its tenants include more than a dozen technology companies with core business interests primarily in photonics and life sciences. It houses several companies founded by current and former BU faculty and students and provides students with an opportunity to assist, observe, and learn from start-up companies. For more information about business incubator activities, turn to the Business Incubation chapter in the Facilities and Equipment section on page 84. In early 2010, the BUPC unveiled a five-year strategic plan as part of the University’s comprehensive review of centers and institutes. The BUPC strategic plan will enhance the Center’s position as an international leader in photonics research. For more information about the strategic plan, turn to the BUPC Strategic Plan section on page 8

    Design research in the Netherlands 2010 : proceedings of the symposium held on 20-21 May 2010, Eindhoven University of Technology

    Get PDF
    Design Research in the Netherlands occurs every five years to take stock of the state-of-the-art in design research that takes place in all design disciplines in the Netherlands. How has our understanding of design developed through research on this phenomenon? What are the research and development methodologies used to acquire insight in design? What have we achieved in the past period, and what are out expectations for the coming period? Researchers and research groups outline their development over the past five years in position papers, addressing insights, methods, results, and problems. Design Research in the Netherlands 2010 is the fourth edition, following three symposia held in 1995, 2000, and 2005. The five-year cycle allows to take conceptual distance from everyday problems that are often project-specific, and to assess how the field is developing. The proceedings form a valuable cross-disciplinary overview of research on design

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle
    • …
    corecore