44 research outputs found

    Rao-Blackwellized Posterior Linearization Backward SLAM

    Get PDF

    Tracking and Estimation Algorithms for Bearings Only Measurements

    No full text
    The Bearings-only tracking problem is to estimate the state of a moving object from noisy observations of its direction relative to a sensor. The Kalman filter, which provides least squares estimates for linear Gaussian filtering problems is not directly applicable because of the highly nonlinear measurement function of the state, representing the bearings measurements and so other types of filters must be considered. The shifted Rayleigh filter (SRF) is a highly effective moment-matching bearings-only tracking algorithm which has been shown, in 2D, to achieve the accuracy of computationally demanding particle filters in situations where the well-known extended Kalman filter and unscented Kalman filter often fail. This thesis has two principal aims. The first is to develop accurate and computationally efficient algorithms for bearings-only tracking in 3D space. We propose algorithms based on the SRF, that allow tracking, in the presence of clutter, of both nonmaneuvering and maneuvering targets. Their performances are assessed, in relation to competing methods, in highly challenging tracking scenarios, where they are shown to match the accuracy of high-order sophisticated particle filters, at a fraction of the computational cost. The second is to design accurate and consistent algorithms for bearings-only simultaneous localization and mapping (SLAM). The difficulty of this problem, originating from the uncertainty in the position and orientation of the sensor, and the absence of range information of observed landmarks, motivates the use of advanced bearings-only tracking algorithms. We propose the quadrature-SRF SLAM algorithm, which is a moment-matching filter based on the SRF, that numerically evaluates the exact mean and covariance of the posterior. Simulations illustrate the accuracy and consistency of its estimates in a situation where a widely used moment-matching algorithm fails to produce consistent estimates. We also propose a Rao-Blackwellized SRF implementation of a particle filter, which, however, does not exhibit favorable consistency properties

    Multi-Robot FastSLAM for Large Domains

    Get PDF
    For a robot to build a map of its surrounding area, it must have accurate position information within the area, and to obtain accurate position information within the area, the robot needs to have an accurate map of the area. This circular problem is the Simultaneous Localization and Mapping (SLAM) problem. An efficient algorithm to solve it is FastSLAM, which is based on the Rao-Blackwellized particle filter. FastSLAM solves the SLAM problem for single-robot mapping using particles to represent the posterior of the robot pose and the map. Each particle of the filter possesses its own global map which is likely to be a grid map. The memory space required for these maps poses a serious limitation to the algorithm\u27s capability when the problem space is large. The problem will only get worse if the algorithm is adapted to multi-robot mapping. This thesis presents an alternate mapping algorithm that extends the single-robot FastSLAM algorithm to a multi-robot mapping algorithm that uses Absolute Space Representations (ASR) to represent the world. But each particle still maintains a local grid to map its vicinity and periodically this grid map is converted into an ASR. An ASR expresses a world in polygons requiring only a minimal amount of memory space. By using this altered mapping strategy, the problem faced in FastSLAM when mapping a large domain can be alleviated. In this algorithm, each robot maps separately, and when two robots encounter each other they exchange range and odometry readings from their last encounter to this encounter. Each robot then sets up another filter for the other robot\u27s data and incrementally updates its own map, incorporating the passed data and its own data at the same time. The passed data is processed in reverse by the receiving robot as if a virtual robot is back-tracking the path of the other robot. The algorithm is demonstrated using three data sets collected using a single robot equipped with odometry and laser-range finder sensors

    Exactly Sparse Delayed-State Filters for View-Based SLAM

    Get PDF
    This paper reports the novel insight that the simultaneous localization and mapping (SLAM) information matrix is exactly sparse in a delayed-state framework. Such a framework is used in view-based representations of the environment that rely upon scan-matching raw sensor data to obtain virtual observations of robot motion with respect to a place it has previously been. The exact sparseness of the delayed-state information matrix is in contrast to other recent feature-based SLAM information algorithms, such as sparse extended information filter or thin junction-tree filter, since these methods have to make approximations in order to force the feature-based SLAM information matrix to be sparse. The benefit of the exact sparsity of the delayed-state framework is that it allows one to take advantage of the information space parameterization without incurring any sparse approximation error. Therefore, it can produce equivalent results to the full-covariance solution. The approach is validated experimentally using monocular imagery for two datasets: a test-tank experiment with ground truth, and a remotely operated vehicle survey of the RMS Titanic.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86062/1/reustice-25.pd

    Sparse Bayesian information filters for localization and mapping

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008This thesis formulates an estimation framework for Simultaneous Localization and Mapping (SLAM) that addresses the problem of scalability in large environments. We describe an estimation-theoretic algorithm that achieves significant gains in computational efficiency while maintaining consistent estimates for the vehicle pose and the map of the environment. We specifically address the feature-based SLAM problem in which the robot represents the environment as a collection of landmarks. The thesis takes a Bayesian approach whereby we maintain a joint posterior over the vehicle pose and feature states, conditioned upon measurement data. We model the distribution as Gaussian and parametrize the posterior in the canonical form, in terms of the information (inverse covariance) matrix. When sparse, this representation is amenable to computationally efficient Bayesian SLAM filtering. However, while a large majority of the elements within the normalized information matrix are very small in magnitude, it is fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability benefits of a sparse parametrization by explicitly pruning these weak links in an effort to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information Filter (SEIF), which has laid much of the groundwork concerning the computational benefits of the sparse canonical form. The thesis performs a detailed analysis of the process by which the SEIF approximates the sparsity of the information matrix and reveals key insights into the consequences of different sparsification strategies. We demonstrate that the SEIF yields a sparse approximation to the posterior that is inconsistent, suffering from exaggerated confidence estimates. This overconfidence has detrimental effects on important aspects of the SLAM process and affects the higher level goal of producing accurate maps for subsequent localization and path planning. This thesis proposes an alternative scalable filter that maintains sparsity while preserving the consistency of the distribution. We leverage insights into the natural structure of the feature-based canonical parametrization and derive a method that actively maintains an exactly sparse posterior. Our algorithm exploits the structure of the parametrization to achieve gains in efficiency, with a computational cost that scales linearly with the size of the map. Unlike similar techniques that sacrifice consistency for improved scalability, our algorithm performs inference over a posterior that is conservative relative to the nominal Gaussian distribution. Consequently, we preserve the consistency of the pose and map estimates and avoid the effects of an overconfident posterior. We demonstrate our filter alongside the SEIF and the standard EKF both in simulation as well as on two real-world datasets. While we maintain the computational advantages of an exactly sparse representation, the results show convincingly that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the original Gaussian distribution as produced by the EKF, but at much less computational expense. The thesis concludes with an extension of our SLAM filter to a complex underwater environment. We describe a systems-level framework for localization and mapping relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped with a forward-looking sonar. The approach utilizes our filter to fuse measurements of vehicle attitude and motion from onboard sensors with data from sonar images of the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a ship hull

    The Estimation Methods for an Integrated INS/GPS UXO Geolocation System

    Get PDF
    This work was supported by a project funded by the US Army Corps of Engineers, Strategic Environment Research and Development Program, contract number W912HQ- 08-C-0044.This report was also submitted to the Graduate School of the Ohio State University in partial fulfillment of the PhD degree in Geodetic Science.Unexploded ordnance (UXO) is the explosive weapons such as mines, bombs, bullets, shells and grenades that failed to explode when they were employed. In North America, especially in the US, the UXO is the result of weapon system testing and troop training by the DOD. The traditional UXO detection method employs metal detectors which measure distorted signals of local magnetic fields. Based on detected magnetic signals, holes are dug to remove buried UXO. However, the detection and remediation of UXO contaminated sites using the traditional methods are extremely inefficient in that it is difficult to distinguish the buried UXO from the noise of geologic magnetic sources or anthropic clutter items. The reliable discrimination performance of UXO detection system depends on the employed sensor technology as well as on the data processing methods that invert the collected data to infer the UXO. The detection systems require very accurate positioning (or geolocation) of the detection units to detect and discriminate the candidate UXO from the non-hazardous clutter, greater position and orientation precision because the inversion of magnetic or EMI data relies on their precise relative locations, orientation, and depth. The requirements of position accuracy for MEC geolocation and characterization using typical state-of-the-art detection instrumentation are classified according to levels of accuracy outlined in: the screening level with position tolerance of 0.5 m (as standard deviation), area mapping (less than 0.05 m), and characterize and discriminate level of accuracy (less than 0.02m). The primary geolocation system is considered as a dual-frequency GPS integrated with a three dimensional inertial measurement unit (IMU); INS/GPS system. Selecting the appropriate estimation method has been the key problem to obtain highly precise geolocation of INS/GPS system for the UXO detection performance in dynamic environments. For this purpose, the Extended Kalman Filter (EKF) has been used as the conventional algorithm for the optimal integration of INS/GPS system. However, the newly introduced non-linear based filters can deal with the non-linear nature of the positioning dynamics as well as the non-Gaussian statistics for the instrument errors, and the non-linear based estimation methods (filtering/smoothing) have been developed and proposed. Therefore, this study focused on the optimal estimation methods for the highly precise geolocation of INS/GPS system using simulations and analyses of two Laboratory tests (cart-based and handheld geolocation system). First, the non-linear based filters (UKF and UKF) have been shown to yield superior performance than the EKF in various specific simulation tests which are designed similar to the UXO geolocation environment (highly dynamic and small area). The UKF yields 50% improvement in the position accuracy over the EKF particularly in the curved sections (medium-grade IMUs case). The UKF also performed significantly better than EKF and shows comparable improvement over the UKF when the IMU noise probability iii density function is symmetric and non-symmetric. Also, since the UXO detection survey does not require the real-time operations, each of the developed filters was modified to accommodate the standard Rauch-Tung-Striebel (RTS) smoothing algorithms. The smoothing methods are applied to the typical UXO detection trajectory; the position error was reduced significantly using a minimal number of control points. Finally, these simulation tests confirmed that tactical-grade IMUs (e.g. HG1700 or HG1900) are required to bridge gaps of high-accuracy ranging solution systems longer than 1 second. Second, these result of the simulation tests were validated from the laboratory tests using navigation-grade and medium-grade accuracy IMUs. To overcome inaccurate a priori knowledge of process noise of the system, the adaptive filtering methods have been applied to the EKF and UKF and they are called the AEKS and AUKS. The neural network aided adaptive nonlinear filtering/smoothing methods (NN-EKS and NN-UKS) which are augmented with RTS smoothing method were compared with the AEKS and AUKS. Each neural network-aided, adaptive filter/smoother improved the position accuracy in both straight and curved sections. The navigation grade IMU (H764G) can achieve the area mapping level of accuracy when the gap of control points is about 8 seconds. The medium grade IMUs (HG1700 and HG1900) with NN-AUKS can maintain less than 10cm under the same conditions as above. Also, the neural network aiding can decrease the difference of position error between the straight and the curved section. Third, in the previous simulation test, the UPF performed better than the other filters. However since the UPF needs a large number of samples to represent the a posteriori statistics in high-dimensional space, the RBPF can be used as an alternative to avoid the inefficiency of particle filter. The RBPF is tailored to precise geolocation for UXO detection using IMU/GPS system and yielded improved estimation results with a small number of samples. The handheld geolocation system using HG1900 with a nonlinear filter-based smoother can achieve the discrimination level of accuracy if the update rate of control points is less than 0.5Hz and 1Hz for the sweep and swing respectively. Also, the sweep operation is more preferred than the swing motion because the position accuracy of the sweep test was better than that of the swing test

    Modeling and Control for Vision Based Rear Wheel Drive Robot and Solving Indoor SLAM Problem Using LIDAR

    Get PDF
    abstract: To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several critical modeling, design, control objectives for rear-wheel drive ground vehicles. Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform that can be used for conducting FAME research. A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities. The augmented vehicle (FreeSLAM Robot) costs less than 500butoffersthecapabilityofcommerciallyavailablevehiclescostingover500 but offers the capability of commercially available vehicles costing over 2000. All demonstrations presented involve rear-wheel drive FreeSLAM robot. The following summarizes the key hardware demonstrations presented and analyzed: (1)Cruise (v, ) control along a line, (2) Cruise (v, ) control along a curve, (3) Planar (x, y) Cartesian Stabilization for rear wheel drive vehicle, (4) Finish the track with camera pan tilt structure in minimum time, (5) Finish the track without camera pan tilt structure in minimum time, (6) Vision based tracking performance with different cruise speed vx, (7) Vision based tracking performance with different camera fixed look-ahead distance L, (8) Vision based tracking performance with different delay Td from vision subsystem, (9) Manually remote controlled robot to perform indoor SLAM, (10) Autonomously line guided robot to perform indoor SLAM. For most cases, hardware data is compared with, and corroborated by, model based simulation data. In short, the thesis uses low-cost self-designed rear-wheel drive robot to demonstrate many capabilities that are critical in order to reach the longer-term FAME goal.Dissertation/ThesisDefense PresentationMasters Thesis Electrical Engineering 201

    Adaptive Localization and Mapping for Planetary Rovers

    Get PDF
    Future rovers will be equipped with substantial onboard autonomy as space agencies and industry proceed with missions studies and technology development in preparation for the next planetary exploration missions. Simultaneous Localization and Mapping (SLAM) is a fundamental part of autonomous capabilities and has close connections to robot perception, planning and control. SLAM positively affects rover operations and mission success. The SLAM community has made great progress in the last decade by enabling real world solutions in terrestrial applications and is nowadays addressing important challenges in robust performance, scalability, high-level understanding, resources awareness and domain adaptation. In this thesis, an adaptive SLAM system is proposed in order to improve rover navigation performance and demand. This research presents a novel localization and mapping solution following a bottom-up approach. It starts with an Attitude and Heading Reference System (AHRS), continues with a 3D odometry dead reckoning solution and builds up to a full graph optimization scheme which uses visual odometry and takes into account rover traction performance, bringing scalability to modern SLAM solutions. A design procedure is presented in order to incorporate inertial sensors into the AHRS. The procedure follows three steps: error characterization, model derivation and filter design. A complete kinematics model of the rover locomotion subsystem is developed in order to improve the wheel odometry solution. Consequently, the parametric model predicts delta poses by solving a system of equations with weighed least squares. In addition, an odometry error model is learned using Gaussian processes (GPs) in order to predict non-systematic errors induced by poor traction of the rover with the terrain. The odometry error model complements the parametric solution by adding an estimation of the error. The gained information serves to adapt the localization and mapping solution to the current navigation demands (domain adaptation). The adaptivity strategy is designed to adjust the visual odometry computational load (active perception) and to influence the optimization back-end by including highly informative keyframes in the graph (adaptive information gain). Following this strategy, the solution is adapted to the navigation demands, providing an adaptive SLAM system driven by the navigation performance and conditions of the interaction with the terrain. The proposed methodology is experimentally verified on a representative planetary rover under realistic field test scenarios. This thesis introduces a modern SLAM system which adapts the estimated pose and map to the predicted error. The system maintains accuracy with fewer nodes, taking the best of both wheel and visual methods in a consistent graph-based smoothing approach
    corecore