292,288 research outputs found

    Ranking influential spreaders is an ill-defined problem

    Full text link
    Finding influential spreaders of information and disease in networks is an important theoretical problem, and one of considerable recent interest. It has been almost exclusively formulated as a node-ranking problem -- methods for identifying influential spreaders rank nodes according to how influential they are. In this work, we show that the ranking approach does not necessarily work: the set of most influential nodes depends on the number of nodes in the set. Therefore, the set of nn most important nodes to vaccinate does not need to have any node in common with the set of n+1n+1 most important nodes. We propose a method for quantifying the extent and impact of this phenomenon, and show that it is common in both empirical and model networks

    Predicting link directions via a recursive subgraph-based ranking

    Full text link
    Link directions are essential to the functionality of networks and their prediction is helpful towards a better knowledge of directed networks from incomplete real-world data. We study the problem of predicting the directions of some links by using the existence and directions of the rest of links. We propose a solution by first ranking nodes in a specific order and then predicting each link as stemming from a lower-ranked node towards a higher-ranked one. The proposed ranking method works recursively by utilizing local indicators on multiple scales, each corresponding to a subgraph extracted from the original network. Experiments on real networks show that the directions of a substantial fraction of links can be correctly recovered by our method, which outperforms either purely local or global methods.Comment: 6 pages, 5 figures; revised arguments for methods section; figures replotted; minor revision

    DeepBox: Learning Objectness with Convolutional Networks

    Full text link
    Existing object proposal approaches use primarily bottom-up cues to rank proposals, while we believe that objectness is in fact a high level construct. We argue for a data-driven, semantic approach for ranking object proposals. Our framework, which we call DeepBox, uses convolutional neural networks (CNNs) to rerank proposals from a bottom-up method. We use a novel four-layer CNN architecture that is as good as much larger networks on the task of evaluating objectness while being much faster. We show that DeepBox significantly improves over the bottom-up ranking, achieving the same recall with 500 proposals as achieved by bottom-up methods with 2000. This improvement generalizes to categories the CNN has never seen before and leads to a 4.5-point gain in detection mAP. Our implementation achieves this performance while running at 260 ms per image.Comment: ICCV 2015 Camera-ready versio

    Deep Multi-view Learning to Rank

    Full text link
    We study the problem of learning to rank from multiple information sources. Though multi-view learning and learning to rank have been studied extensively leading to a wide range of applications, multi-view learning to rank as a synergy of both topics has received little attention. The aim of the paper is to propose a composite ranking method while keeping a close correlation with the individual rankings simultaneously. We present a generic framework for multi-view subspace learning to rank (MvSL2R), and two novel solutions are introduced under the framework. The first solution captures information of feature mappings from within each view as well as across views using autoencoder-like networks. Novel feature embedding methods are formulated in the optimization of multi-view unsupervised and discriminant autoencoders. Moreover, we introduce an end-to-end solution to learning towards both the joint ranking objective and the individual rankings. The proposed solution enhances the joint ranking with minimum view-specific ranking loss, so that it can achieve the maximum global view agreements in a single optimization process. The proposed method is evaluated on three different ranking problems, i.e. university ranking, multi-view lingual text ranking and image data ranking, providing superior results compared to related methods.Comment: Published at IEEE TKD
    • …
    corecore