11,292 research outputs found

    Estratégias de encaminhamento para recolha oportunística de informação em redes móveis de internet das coisas

    Get PDF
    High vehicular mobility in urban scenarios originates inter-vehicles communication discontinuities, a highly important factor when designing a forwarding strategy for vehicular networks. Store, carry and forward mechanisms enable the usage of vehicular networks in a large set of applications, such as sensor data collection in IoT, contributing to smart city platforms. This work focuses on two main topics to enhance the forwarding decision: i) forwarding strategies that make use of location-aware and social-based to perform neighborhood selection, ii) and packet selection mechanisms to provide Quality of Service (QoS). The neighborhood selection is performed through multiple metrics, resulting in three forwarding strategies: (1) Gateway Location Awareness (GLA), a location-aware ranking classification making use of velocity, heading angle and distance to the gateway, to select the vehicles with higher chance to deliver the information in a shorter period of time, thus differentiating nodes through their movement patterns; (2) Aging Social-Aware Ranking (ASAR) that exploits the social behaviours of each vehicle, where nodes are ranked based on a historical contact table, differentiating vehicles with a high number of contacts from those who barely contact with other vehicles; (3) and to merge both location and social aforementioned algorithms, a hybrid approach emerges, thus generating a more intelligent mechanism. Allied to the forwarding criteria, two packet selection mechanisms are proposed to address distinct network functionalities, namely: Distributed Packet Selection, that focuses primarily on data type prioritization and secondly, on packet network lifetime; and Equalized Packet Selection, which uses network metrics to calculate a storage packet ranking. To do so, the packet number of hops, the packet type and packet network lifetime are used. In order to perform the evaluation of the proposed mechanisms, both real and emulation experiments were performed. For each forwarding strategy, it is evaluated the influence of several parameters in the network's performance, as well as comparatively evaluate the strategies in different scenarios. Experiment results, obtained with real traces of both mobility and vehicular connectivity from a real city-scale urban vehicular network, are used to evaluate the performance of GLA, ASAR and HYBRID schemes, and their results are compared to lower- and upper-bounds. Later, these strategies' viability is also validated in a real scenario. The obtained results show that these strategies are a good tradeoff to maximize data delivery ratio and minimize network overhead, while making use of moving networks as a smart city network infrastructure. To evaluate the proposed packet selection mechanisms, a First In First Out packet selection technique is used as ground rule, thus contrasting with the more objective driven proposed techniques. The results show that the proposed mechanisms are capable of provide distinct network functionalities, from prioritizing a packet type to enhancing the network's performance.A elevada mobilidade em cenários veiculares urbanos origina descontinuidades de comunicação entre veículos, um fator altamente importante quando se desenha uma estratégia de encaminhamento para redes veiculares. Mecanismos de store, carry and forward (guardar, carregar e entregar) possibilitam a recolha de dados de sensores em aplicações da Internet das coisas, contribuindo para plataformas de cidades inteligentes. Este trabalho é focado em dois tópicos principais de forma a melhorar a decisão de encaminhamento: i) estratégias de encaminhamento que fazem uso de métricas sociais e de localização para efetuar a seleção de vizinhos, ii) e mecanismos de seleção de pacotes que qualificam a rede com qualidade de serviço. A seleção de vizinhos é feita através de múltiplas métricas, resultando em três estratégias de encaminhamento: Gateway Location Awareness (GLA), uma classificação baseada em localização que faz uso de velocidade, ângulo de direção e distância até uma gateway, para selecionar os veículos com maior probabilidade de entregar a informação num menor período temporal, distinguindo os veículos através dos seus padrões de movimento. Aging Social-Aware Ranking (ASAR) explora os comportamentos sociais de cada veículo, onde é atribuída uma classificação aos veículos com base num histórico de contactos, diferenciando veículos com um alto número de contactos de outros com menos. Por fim, por forma a tirar partido das distintas características de cada uma das destas estratégias, é proposta uma abordagem híbrida, Hybrid between GLA and ASAR (HYBRID). Aliado ao critério de encaminhamento, são propostos dois mecanismos de seleção de pacotes que focam distintas funcionalidades na rede, sendo estes: Distributed Packet Selection, que foca em primeiro lugar na prioritização de determinados tipos de pacotes e em segundo lugar, no tempo de vida que resta ao pacote na rede; e Equalized Packet Selection, que usa métricas da rede para calcular a classificação de cada pacote em memória. Para tal, é usado o numero de saltos do pacote, o tipo de dados do pacote e o tempo de vida que resta ao pacote na rede. De forma a avaliar os mecanismos propostos, foram realizadas experiências em emulador e em cenário real. Para cada estratégia de encaminhamento, e avaliada a influência de vários parâmetros de configuração no desempenho da rede. Para além disso, é feita uma avaliação comparativa entre as várias estratégias em diferentes cenários. Resultados experimentais, obtidos usando traços reais de mobilidade e conetividade de uma rede veicular urbana, são utilizados para avaliar a performance dos esquemas GLA, ASAR e HYRID. Posteriormente, a viabilidade destas estratégias é também validada em cenário real. Os resultados obtidos mostram que estas estratégias são um bom tradeoff para maximizar a taxa de entrega de dados e minimizar a sobrecarga de dados na rede. Para avaliar os mecanismos de seleção de pacotes, um simples mecanismo First In First Out é utilizado como base, contrapondo com as técnicas propostas mais orientadas a objectivos concretos. Os resultados obtidos mostram que os mecanismos propostos são capazes de proporcionar à rede diferentes funcionalidades, desde prioritização de determinado tipos de dados a melhoramentos no desempenho da rede.Agradeço à Fundação Portuguesa para a Ciência e Tecnologia pelo suporte financeiro através de fundos nacionais e quando aplicável cofi nanciado pelo FEDER, no âmbito do Acordo de Parceria PT2020 pelo projecto MobiWise através do programa Operacional Competitividade e Internacionalização (COMPETE 2020) do Portugal 2020 (POCI-01-0145-FEDER-016426).Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Cloud transactions and caching for improved performance in clouds and DTNs

    Get PDF
    In distributed transactional systems deployed over some massively decentralized cloud servers, access policies are typically replicated. Interdependencies ad inconsistencies among policies need to be addressed as they can affect performance, throughput and accuracy. Several stringent levels of policy consistency constraints and enforcement approaches to guarantee the trustworthiness of transactions on cloud servers are proposed. We define a look-up table to store policy versions and the concept of Tree-Based Consistency approach to maintain a tree structure of the servers. By integrating look-up table and the consistency tree based approach, we propose an enhanced version of Two-phase validation commit (2PVC) protocol integrated with the Paxos commit protocol with reduced or almost the same performance overhead without affecting accuracy and precision. A new caching scheme has been proposed which takes into consideration Military/Defense applications of Delay-tolerant Networks (DTNs) where data that need to be cached follows a whole different priority levels. In these applications, data popularity can be defined not only based on request frequency, but also based on the importance like who created and ranked point of interests in the data, when and where it was created; higher rank data belonging to some specific location may be more important though frequency of those may not be higher than more popular lower priority data. Thus, our caching scheme is designed by taking different requirements into consideration for DTN networks for defense applications. The performance evaluation shows that our caching scheme reduces the overall access latency, cache miss and usage of cache memory when compared to using caching schemes --Abstract, page iv

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network

    Enhanced Interest Aware PeopleRank for Opportunistic Mobile Social Networks

    Get PDF
    Network infrastructures are being continuously challenged by increased demand, resource-hungry applications, and at times of crisis when people need to work from homes such as the current Covid-19 epidemic situation, where most of the countries applied partial or complete lockdown and most of the people worked from home. Opportunistic Mobile Social Networks (OMSN) prove to be a great candidate to support existing network infrastructures. However, OMSNs have copious challenges comprising frequent disconnections and long delays. we aim to enhance the performance of OMSNs including delivery ratio and delay. We build upon an interest-aware social forwarding algorithm, namely Interest Aware PeopleRank (IPeR). We explored three pillars for our contribution, which encompass (1) inspect more than one hop (multiple hops) based on IPeR (MIPeR), (2) by embracing directional forwarding (Directional-IPeR), and (3) by utilizing a combination of Directional forwarding and multi-hop forwarding (DMIPeR). For Directional-IPeR, different values of the tolerance factor of IPeR, such as 25% and 75%, are explored to inspect variations of Directional-IPeR. Different interest distributions and users’ densities are simulated using the Social-Aware Opportunistic Forwarding Simulator (SAROS). The results show that (1) adding multiple hops to IPeR enhanced the delivery ratio, number of reached interested forwarders, and delay slightly. However, it increased the cost and decreased F-measure hugely. Consequently, there is no significant gain in these algorithms. (2) Directional-IPeR-75 performed generally better than IPeR in delivery ratio, and the number of reached interested forwarders. Besides, when some of the uninterested forwarders did not participate in messages delivery, which is a realistic behavior, the performance is enhanced and performed better generally in all metrics compared to IPeR. (3) Adding multiple hops to directional guided IPeR did not gain any enhancement. (4) Directional-IPeR-75 performs better in high densities in all metrics except delay. Even though, it enhances delay in sparse environments. Consequently, it can be utilized in disastrous areas, in which few people are with low connectivity and spread over a big area. In addition, it can be used in rural areas as well where there is no existing networks
    corecore