27,968 research outputs found

    Rank-Based Illumination Estimation

    Get PDF
    A new two-stage illumination estimation method based on the concept of rank is presented. The method first estimates the illuminant locally in subwindows using a ranking of digital counts in each color channel and then combines local subwindow estimates again based on a ranking of the local estimates. The proposed method unifies the MaxRGB and Grayworld methods. Despite its simplicity, the performance of the method is found to be competitive with other state-of-the art methods for estimating the chromaticity of the overall scene illumination

    Real-time architecture for robust motion estimation under varying illumination conditions

    Get PDF
    Motion estimation from image sequences is a complex problem which requires high computing resources and is highly affected by changes in the illumination conditions in most of the existing approaches. In this contribution we present a high performance system that deals with this limitation. Robustness to varying illumination conditions is achieved by a novel technique that combines a gradient-based optical flow method with a non-parametric image transformation based on the Rank transform. The paper describes this method and quantitatively evaluates its robustness to different illumination changing patterns. This technique has been successfully implemented in a real-time system using reconfigurable hardware. Our contribution presents the computing architecture, including the resources consumption and the obtained performance. The final system is a real-time device capable to computing motion sequences in real-time even in conditions with significant illumination changes. The robustness of the proposed system facilitates its use in multiple potential application fields.This work has been supported by the grants DEPROVI (DPI2004-07032), DRIVSCO (IST-016276-2) and TIC2007:”Plataforma Sw-Hw para sistemas de visión 3D en tiempo real”

    Weighted Low Rank Approximation for Background Estimation Problems

    Full text link
    Classical principal component analysis (PCA) is not robust to the presence of sparse outliers in the data. The use of the â„“1\ell_1 norm in the Robust PCA (RPCA) method successfully eliminates the weakness of PCA in separating the sparse outliers. In this paper, by sticking a simple weight to the Frobenius norm, we propose a weighted low rank (WLR) method to avoid the often computationally expensive algorithms relying on the â„“1\ell_1 norm. As a proof of concept, a background estimation model has been presented and compared with two â„“1\ell_1 norm minimization algorithms. We illustrate that as long as a simple weight matrix is inferred from the data, one can use the weighted Frobenius norm and achieve the same or better performance
    • …
    corecore