61,141 research outputs found

    MARS Motif: Assessment and Ranking Suite for transcription factor binding motifs

    Get PDF
    We describe MARS (Motif Assessment and Ranking Suite), a web-based suite of tools used to evaluate and rank PWM-based motifs. The increased number of learned motif models that are spread across databases and in different PWM formats, leading to a choice dilemma among the users, is our motivation. This increase has been driven by the difficulty of modelling transcription factor binding sites and the advance in high-throughput sequencing technologies at a continually reducing cost. Therefore, several experimental techniques have been developed resulting in diverse motif-finding algorithms and databases. We collate a wide variety of available motifs into a benchmark database, including the corresponding experimental ChIP-seq and PBM data obtained from ENCODE and UniPROBE databases, respectively. The implemented tools include: a data-independent consistency-based motif assessment and ranking (CB-MAR), which is based on the idea that ‘correct motifs’ are more similar to each other while incorrect motifs will differ from each other; and a scoring and classification-based algorithms, which rank binding models by their ability to discriminate sequences known to contain binding sites from those without. The CB-MAR and scoring techniques have a 0.86 and 0.73 median rank correlation using ChIP-seq and PBM respectively. Best motifs selected by CB-MAR achieve a mean AUC of 0.75, comparable to those ranked by held out data at 0.76 – this is based on ChIP-seq motif discovery using five algorithms on 110 transcription factors. We have demonstrated the benefit of this web server in motif choice and ranking, as well as in motif discovery

    Biodiversity informatics: the challenge of linking data and the role of shared identifiers

    Get PDF
    A major challenge facing biodiversity informatics is integrating data stored in widely distributed databases. Initial efforts have relied on taxonomic names as the shared identifier linking records in different databases. However, taxonomic names have limitations as identifiers, being neither stable nor globally unique, and the pace of molecular taxonomic and phylogenetic research means that a lot of information in public sequence databases is not linked to formal taxonomic names. This review explores the use of other identifiers, such as specimen codes and GenBank accession numbers, to link otherwise disconnected facts in different databases. The structure of these links can also be exploited using the PageRank algorithm to rank the results of searches on biodiversity databases. The key to rich integration is a commitment to deploy and reuse globally unique, shared identifiers (such as DOIs and LSIDs), and the implementation of services that link those identifiers

    Synthetic sequence generator for recommender systems - memory biased random walk on sequence multilayer network

    Full text link
    Personalized recommender systems rely on each user's personal usage data in the system, in order to assist in decision making. However, privacy policies protecting users' rights prevent these highly personal data from being publicly available to a wider researcher audience. In this work, we propose a memory biased random walk model on multilayer sequence network, as a generator of synthetic sequential data for recommender systems. We demonstrate the applicability of the synthetic data in training recommender system models for cases when privacy policies restrict clickstream publishing.Comment: The new updated version of the pape

    Quantifying the consistency of scientific databases

    Full text link
    Science is a social process with far-reaching impact on our modern society. In the recent years, for the first time we are able to scientifically study the science itself. This is enabled by massive amounts of data on scientific publications that is increasingly becoming available. The data is contained in several databases such as Web of Science or PubMed, maintained by various public and private entities. Unfortunately, these databases are not always consistent, which considerably hinders this study. Relying on the powerful framework of complex networks, we conduct a systematic analysis of the consistency among six major scientific databases. We found that identifying a single "best" database is far from easy. Nevertheless, our results indicate appreciable differences in mutual consistency of different databases, which we interpret as recipes for future bibliometric studies.Comment: 20 pages, 5 figures, 4 table
    • …
    corecore