
MARS: Motif Assessment and Ranking Suite for
transcription factor binding motifs

Caleb Kipkurui Kibet* and Philip Machanick

Department of Computer Science and Research Unit in
Bioinformatics (RUBi), Rhodes University, Grahamstown, 6140,
South Africa

* calebkibet88@gmail.com

Abstract

We describe MARS (Motif Assessment and Ranking Suite), a web-based suite of
tools used to evaluate and rank PWM-based motifs. The increased number of
learned motif models that are spread across databases and in different PWM
formats, leading to a choice dilemma among the users, is our motivation. This
increase has been driven by the difficulty of modelling transcription factor
binding sites and the advance in high-throughput sequencing technologies at a
continually reducing cost. Therefore, several experimental techniques have been
developed resulting in diverse motif-finding algorithms and databases. We
collate a wide variety of available motifs into a benchmark database, including
the corresponding experimental ChIP-seq and PBM data obtained from
ENCODE and UniPROBE databases, respectively. The implemented tools
include: a data-independent consistency-based motif assessment and ranking
(CB-MAR), which is based on the idea that ‘correct motifs’ are more similar to
each other while incorrect motifs will differ from each other; and a scoring and
classification-based algorithms, which rank binding models by their ability to
discriminate sequences known to contain binding sites from those without. The
CB-MAR and scoring techniques have a 0.86 and 0.73 median rank correlation
using ChIP-seq and PBM respectively. Best motifs selected by CB-MAR achieve
a mean AUC of 0.75, comparable to those ranked by held out data at 0.76 – this
is based on ChIP-seq motif discovery using five algorithms on 110 transcription
factors. We have demonstrated the benefit of this web server in motif choice and
ranking, as well as in motif discovery. It can be accessed at
www.bioinf.ict.ru.ac.za.

Introduction

We introduce MARS (Motif Assessment and Ranking Suite), a web server
hosting a suite of tools for motif evaluation and ranking. It provides a service
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that is necessitated by the advance in high-throughput sequencing technologies
at a continually reducing cost that has seen a large amount of – often noisy –
data being generated by various studies [27]. To make sense of these datasets,
several tools and algorithms have been developed, differing in data cleaning and
statistical algorithms involved. The wide variety and the large number of
computational tools being developed makes it hard for a non-specialist with
limited computational skills to choose the best tools for use in their research [1].
Additionally, to improve on currently available tools, algorithm developers need
well thought out and representative benchmark data (gold standard) and
evaluation statistics. This problem has been tackled by independent evaluation
studies [24,25,35,37] focused on various niches of research and data, producing
incomparable results. This prompted a question of “who watches the watchmen”
(evaluation benchmarks) by Iantorno et al., [14] who also proposed that a proper
benchmark should follow a set of pre-determined criteria to ensure that the
evaluations are biologically relevant. Aniba et al.. [1] provide a set of criteria for
a good benchmark that we adapt to the context of motif assessment as follows:

• Relevant – scoring methods should provide biologically meaningful
evaluations

• Solvable – scoring methods should not be trivial but must be possible to
use with reasonable effort

• Scalable – the benchmark should be expandable to cover new techniques
and algorithms as they develop

• Accessible – data and statistical tools should be easy to source and use
to evaluate other algorithms or protocols

• Independent – methods should not be tailored or biased to a particular
algorithm or biased towards certain experimental techniques

• Evolvable – the benchmark should change as new data are made
available, as well as to reflect the current problems and challenges in the
field

The evaluation problem has been widely investigated in multiple sequence
alignment, 3D structure prediction, protein function and gene expression
analysis [1], mostly following the criteria above. However, evaluation remains an
active challenge in gene regulatory research, especially in predicting TF binding
sites and the accuracy of prediction models [39]. This difficulty is directly linked
to the motif discovery problem, which has been attributed to the degeneracy of
TF binding and the presence of multiple potential binding sites in the
genome [13,16]. The difficulty of motif discovery has in turn driven the growth
in experimental techniques developed to improve the affinity and specificity of
TF binding site prediction models; techniques to identify binding sites or
binding affinity include Chromatin Immunoprecipitation followed by parallel
sequencing (ChIP-seq) [15] or exonuclease cleavage (ChIP-exo) [28], protein
binding microarray (PBM) [2], Assay for Transposase-Accessible Chromatin
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with high-throughput sequencing (ATAC-seq) [7], DNase I digestion and
high-throughput sequencing (DNase-seq) [31] and many others. Consequently,
the number of algorithms and hence the binding models in databases continues
to increase. Two areas are in need of evaluation: the algorithms used in motif
discovery and the models deposited in the various motif databases. Although
interlinked, in that ranking a model can be an indirect evaluation of an
algorithm used to generate it, most of the evaluation attempts so far have been
focused on the algorithms. This is a challenging task given that new tools are
published regularly with varied implementations, scoring functions and even the
data used for motif discovery. Therefore, establishing a widely useful model or
motif algorithm evaluation platform is a moving target.

Nonetheless, there have been some attempts to develop tools and techniques
to evaluate motif discovery algorithms, which can be categorized into
assess-by-binding site prediction, motif comparison or by sequence scoring and
classification [18]. We relate a selection of known approaches to the benchmark
criteria we outline above.

An assess-by-binding site prediction approach evaluates algorithms by their
ability to identify known or inserted binding sites in a sequence. It is widely
investigated; a number of stand-alone motif assessment tools [26] and web
servers [30,33] have been developed. However, these tools neither evolved nor
scaled with advances in motif discovery algorithms, reducing their relevance, and
thus failing to meet major requirements for an evaluation benchmark.
Assess-by-scoring and classification tests binding models by their ability to
discriminate sequences known to contain binding sites from those without.
UniPROBE is the most comprehensive collection of PBM-derived motifs [22]
and we are aware of one web server that uses such data in motif evaluation [36]
(it has neither evolved, scaled not is it easily accessible) while, for ChIP-seq data,
Swiss Bioinformatics hosts a simple web server (PWMTools
(http://ccg.vital-it.ch/pwmtools/pwmeval.php) that is limited to testing
single motifs against ENCODE data using sum occupancy scoring; it does not
allow for comparative motif or sequence data testing (not relevant or accessible)
and the site is not published. On the other hand, assess-by-motif-comparison
has generally been used to determine if the discovered motifs are similar to those
in ‘reference databases’ using motif comparison algorithms. An algorithm is
considered successful if it can predict a motif similar to those in the database.
However, this assumes the accuracy of previous predictions (not relevant or
scalable), a weakness we address in this study.

The spread of motif models across DBs and in different PWM formats makes
it difficult to create a benchmark that ranks multiple motifs for a given TF, and
this problem is compounded by the growth in available data [18]. There is a lack
of an easily accessible and independent motif evaluation platform that can allow
users to rank PWM models for a given TF. To fill this gap, we introduce a web
server that hosts a suite of motif assessment tools used to evaluate and rank
motifs. For wider applicability, we collect ChIP-seq and PBM data generated
from different labs and use an average score to represent a given motif, with the
assumption that this would capture the most general binding behaviour. We
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also apply a wide variety of scoring functions and statistics to reduce technique
bias. In addition, we introduce a novel Consistency-Based Motif Assessment and
Ranking (CB-MAR) approach that can be considered to be data-independent,
hence less biased compared to scoring-based techniques.

Materials and Methods

Benchmark data

We downloaded all ChIP-seq peaks uniformly processed by Analysis Working
Group (AWG) from ENCODE [32], PBM from UniPROBE [5] database and
PMW motifs from various databases and publications, prepared as previously
described [18] and stored in a MySQL database (Table 1). Alternative TF
names (from GeneCards [29]) link various alternative TF names to a TF class
ID derived from the TFClass classification [38] to find all motifs for a TF
irrespective of naming inconsistency. Unless otherwise specified, all sequence
data used are derived form the human genome (hg19), except for the PBM data
where we also use mouse data.

Table 1. Summary of Benchmark Data in the Database: ‘Used in analysis’ represent data using
in our comparative tests. For motif discovery with GimmeMotifs we use 110 (in brackets).

Data Type TFs motifs motifs per TF Used in Analysis

ChIP-seq 161 691 4.3 83 (110)
PBM 285 455 1.6 60
PWM-Motifs 1352 6050 4.5 3686

Algorithms Overview

We have previously described the implementation of assessing by scoring and
enrichment algorithms [18]. In summary, for each TF, the motifs in PWM
format are used to score sequences partitioned into positive (test) and the
negative (background) using one of the implemented scoring functions. Finally,
the ability to classify the two sets is evaluated by area under receiver operator
characteristic curve (AUC) or the mean normalized conditional probability
(MNCP) statistics (Table 2). See our previous paper [18] for more details on the
scoring functions and statistics used.

Consistency-Based Motif Assessment and Ranking (CB-MAR)

CB-MAR is based on the idea that ‘correct motifs’ are more similar to each
other while incorrect motifs will differ from each other. The logic for this view is
that differing methods are unlikely to reproduce each others’ errors. This idea is
used in evaluating sequence alignments: correct ones are assumed to compare
with each other in a consistent manner, while incorrect ones will differ from each
other in various ways, generating inconsistent alignments [14,20].
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Table 2. Implemented scoring functions: The table provides a list of scoring functions used and
the recommended statistics.

Scoring functions Preferred stat. Recommended? Reference

Energy AUC or MNCP High (Default) [40]
GOMMER MNCP High [8]
Sum Occupancy MNCP Average [23]
Max Occupancy MNCP Average [41]
Max Log-odds Not Recommended [41]
Sum Log-odds Not Recommended [3]

We implement this approach using Tomtom [12] and FISim [11] motif
comparison algorithms. For a given TF, we calculate a similarity score between
all motif pairs and finally an average motif similarity score, which we use as a
measure of motif quality. For best results, the benchmark motif set should be:
(a) generated from a variety of data and motif finding algorithms – with (b)
identical motifs eliminated (especially in a small set) – and (c) be large enough
to capture variation in binding behaviours of the TF. The optimum number
depends on the TF: one with uniform behaviour can be characterised with a
smaller set of motifs than one with variable binding affinity, for example.

In more detail, CB-MAR is implemented as follows. Given a TF with a
collection of motifs M of size n and using Tomtom’s Euclidean distance (ED) for
motif comparison, we define Pairwise Similarity Score (PSS) based on Tomtom
P-value PMi,Mj . The PSS for motif Mi and Mj is computed as:

PSS(Mi,Mj) = −log(PMi,Mj ), (1)

and then normalized by the maximum score of all PSS scores of Mi. The
Average Similarity Score (ASS), which we use as the measure of quality and
rank, of motif Mi, is then computed as:

ASS(Mi) =

∑n
j PSS(Mi,Mj)

n
, (2)

MARS Web server Implementation

Figure 1. Decision flow di-
agram. Guides the user on
the appropriate tools to use in
MARS:

The MARS web server is
implemented in Django, a Python
web framework, and hosted
on an Apache web server while
the PWM motifs and sequence
benchmark data are stored
in a MySQL database. MARS
is designed to allow the users
to either retrieve ranked motifs
for a given TF or rank their own,
as long as the required test data
is available or uploaded. A guided
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search function for the available motif and benchmark data assists the users
when choosing the tools to use, based on the decision flow diagram in Figure 1.
The MARS documentation also provides a detailed guide on the accepted data
formats and best practices when using the various tools in the web-server
(www.bioinf.ict.ru.ac.za/documentation). For any analysis, the TF name
is the only required input, used to retrieve the available motifs from the
database and benchmark data in the case of assess-by-score and enrichment
methods (Figure 2). Where the data is not available, the user is prompted to
upload. MARS currently accepts motifs in MEME format and test ChIP-seq
data in BED format.

Evaluation of MARS tools

Comparison of the assessment approaches: How well tools implementing
different algorithms and data reproduce each other can act as a crude evaluation.
For our evaluation, we select a total of 127 TFs that have a TFClass ID, have
more than 10 motifs, and have benchmark data sourced from either PBM (60
TFs) or ChIP-seq (83 TFs) (see Table 1) to rank all the available motifs for each
TF using the different tools available. For simplicity of analysis and comparison,
we use energy scoring function and AUC statistics throughout these evaluations
(Table 2) – a combination we found [18] to produce consistent rankings and is
least biased by motif length and information content (IC).

Motif assessment in ab initio motif discovery: To validate CB-MAR,
we apply it to choose the best motifs in ab initio discovery, a task commonly
accomplished using held out data. We take advantage of an ensemble motif
finding tool, GimmeMotifs [34], which performs ab initio motif discovery from
ChIP-seq data using nine algorithms. A total of 110 TFs, which had ENCODE
ChIP-seq data and a corresponding TF-class ID, were chosen for the analysis.
From all the available data from different cell lines for a given TF, we extract
the top 500 peaks widened around the peak centre to 100 bp, merged and
shuffled to avoid sampling bias when partitioned. We then perform ab initio
motif discovery on 50% of the data and the rest is held out for validation. We
randomly sampled 5000 peak sequences for Ctcf as it had a large data set to
reduce computational costs. After motif discovery, we use our CB-MAR (using
Tomtom) approach in combination with motif clustering (using gimme cluster
from GimmeMotifs at 95% similarity) to rank and narrow down the motif
predictions to the best three non-redundant motifs. Next, we use the validation
data to evaluate the best motifs identified by CB-MAR and GimmeMotifs using
the gimme roc command. Internally, GimmeMotifs uses 20% of the input
sequences for discovery and the rest for evaluation and ranking.
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Figure 2. Motif assessment flow diagram: (1) User enters a TF name and/or uploads motifs in
MEME format (to evaluate own data). (2) Motifs and test sequences linked to the TF are extracted
from the database. (3) Motifs can be ranked, by comparison, used to score test sequences (rank by
score) or its enrichment determined using CentriMo (rank by enrichment). (4) The results are visualized
interactively, (5) with additional information like motif length, Information content, and logo. The
clustergram offers additional details on the motif or test data clustering. In the end, the user can
download ranked motifs in MEME format, as well as raw data for further analysis.
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Figure 3. Correlating consistency-based assessment (Tomtom and FISim) with Energy
AUC ranking in ChIP-seq data: The bar graph (A) shows how rankings based on Energy scoring
correlate with consistency based techniques. The mean±STD and median with interquartile range
statistics are annotated on the graph. In (B), we show the effect of motif information content (total
and averaged by length), the number of motifs (size) and length on motif ranking. The CentriMo plots
predict the possible direct binding behaviours (based on the sharp, centred peaks) of (C) Pu1 motifs in
ChIP-seq peaks, and indirect or cooperative binding of (D) Tr4 and (E) Bcl3 motifs. The motif names
and the p-value of central enrichment of the ChIPed motifs is provided in the figure legends. For Tr4,
the other centrally enriched motif (Rxra) could bind cooperatively with it.
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Results

Benchmarking and evaluation of algorithms

For the assess-by-score approach, we have previously performed a thorough
comparison and testing to determine the effect of the scoring functions and
motif characteristics (length and IC) on score and rank [18]. In summary, we
found that motif ranking is influenced by the scoring function used in a
TF-specific manner with energy scoring producing the most ‘biologically
relevant’ rankings and that motif IC is not a reliable predictor of motif quality
(Table 2). Since there is no ‘ground truth’ by which we can evaluate these motif
assessment approaches, we rely on how well rankings from the different tools
agree and how well our benchmarks and evaluations meet the requirements
listed in the introduction.

For assess-by-comparison, we determine whether CB-MAR is influenced by
motif length or information content, which could create a bias, and see if that
could explain the difference in performance between Tomtom and FISim.
Tomtom scores have a positive correlation (R=0.24, favouring higher IC motifs)
with average IC normalized over motif length while FISim scores have a negative
correlation (-0.11, penalize higher IC motifs). FISim is not influenced by length
(R=0.078) while Tomtom penalizes longer motifs (R=-0.25) since average IC is
lower for longer motifs with low IC flanks. Surprisingly, the number of motifs for
the TF seems to negatively affect motif scores in FISim (R=-0.38) – due to
higher IC as the number of motifs is increased – but has no effect for Tomtom
(R=0.011), possibly explaining their difference in performance (Figure 3B).

Tomtom comparison produces ‘biologically relevant’ rankings

For consistency-based motif ranking (CB-MAR), we decide on the best motif
comparison algorithms that generate biologically relevant rankings – as defined
by how well the motif ranks reproduce those based on in vivo data (ChIP-seq) –
by correlating with ranks based on energy scoring. From figure 3A, we observe
that the scores and ranks based on Tomtom (median=0.88; Interquartile range,

Figure 4. Joint scat-
ter plot and histogram
shows the skewed distribution
of Spearman rank correlation
scores of Tomtom and FISim
with those based on Energy
scoring
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pearsonr = 0.84; p = 3.5e­23

IQR=0.63-0.93)
can better reproduce
AUC scores based on energy
scoring compared with FISim
(median=0.78; IQR=0.52-0.86).
We use the median to summarise
the performance of the two
techniques since the correlation
scores were skewed (Figure 4).
The level of correlation between
CB-MAR and energy AUC
rankings seem to also predict the
binding behaviour of the TFs.
For Tomtom, we find highly
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correlated motifs also have centrally enriched peaks in CentriMo (Figure 3B and
C) while less or negatively correlated TFs have broad peaks (Figure 3D and E),
a known predictor of indirect or cooperative binding [4]. The most common
poorly correlated TF family, znfC2H2, are also known to bind in a sequence
independent manner [16].

For in vitro data (PBM), however, we do not find a clear performance
difference between the median average AUC scores in Tomtom (0.70) and Fisim
(0.72), but observe a higher mean in FISim (0.56) compared with Tomtom
(0.52), hinting that FISim could better model in vitro while Tomtom models in
vivo binding better. We also note that the TFs with low correlation between
scores are known to bind indirectly or cooperatively. Specifically, the TFs from
high mobility group (HMG) which have a negative correlation, are known to
bind both directly and cooperatively, but they may have a different binding

Figure 5. Zbtb3 binds
differently in vivo and in
vitro: Motif ranks are in ChIP-
seq and PBM benchmark data
are mostly in agreement except
for a few TFs.
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behaviour
in vivo and in vitro. Finally,
for TFs with data from both
ChIP-seq and PBM (21 TFs),
we compared how the Energy
scores and motif rankings in
the two data types correlate. We
observe a similar trend, where
the correlation scores reflect the
TF binding behaviour (Figure 5).
Zbtb3 has a negative correlation
of over -0.7, a possible indicator
of a difference between in vivo
and in vitro binding behaviour.

Assess-by-score-Energy reproduces gimme roc rankings

Figure 6. Joint scat-
ter plot and histogram for
gimme roc and Energy scoring
correlation of AUC scores. The
two approaches are in agree-
ment and the data is normally
distributed
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GimeMotifs [34],
an ensemble motif discovery
pipeline for ChIP-seq data,
also includes gimme roc for motif
quality analysis and ranking.
We use this to benchmark our
approach and found that gimme
roc produces motif rankings
significantly correlated with the
Energy scoring ranks (R=0.99
Pearson, p=1.9 × 10−105)
(Figure 6) and (R=0.995
Spearman’s, correlation
p=1.7 × 10−108). Also, there is
no significant difference between
the two sets of scores (p=0.825,
Wilcoxon rank-sum test),
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Figure 7. CB-MAR ranking useful in motif discovery: The scatter
plot compares the performance of motifs identified by GimmeMotifs and CB-
MAR:Tomtom (compare) as evaluated in ChIP-seq data showing the usefulness
of data independent approach.

which validates our implementation of energy scoring function.

CB-MAR generates relevant rankings in motif discovery

The first level of application of motif evaluation is in ab initio motif discovery,
where an algorithm has to narrow down the identified motifs to a few that
reflect the binding behaviour of a TF. In addition, the advent of ensemble motif
discovery pipelines makes proper motif assessment and ranking even more
desirable. By purely using CB-MAR, we were able to correctly identify better or
similar motifs (Figure 7) in a majority of the cases. Overall, the quality of
motifs identified by GimmeMotifs and CB-MAR are not significantly different
(0.97; Wilcoxon rank-sum test) with mean AUC scores of 0.76 and 0.75
respectively. For 6 TFs that had motifs identified by GimmeMotifs being better
than CB-MAR motif by more than 0.1 AUC, we checked if choosing the second
or third best motif would have any effect on the quality (Figure 8A). We find
that choosing the second motif improves the quality in Maz, Yy1, and Atf1,
while the third motif is always of a lower quality except for Irf3. For E2f4, the
quality is reduced and no effect is observed on Tcfap2 (Ap2). On the other
hand, there were 11 TFs with better scores in CB-MAR than GimmeMotifs.
When we choose the second or third motif as ranked by GimmeMotifs the
quality of the motifs improved for 7 TFs but no effect in E2f1, Ikzf1, Znf263 and
Atf3 TFs (Figure 8B).
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Discussion

The number of motifs available for a single TF continues to increase. This offers
variability by increasing the binding spectra captured; TFs bind to degenerate
sites spread in the genome. However, this is also a challenge. Choosing a binding
model is now a daunting task, given that we can already have up to 47 different
PWM models in our collection for a single TF generated from a variety of data
and algorithms. How can they be ranked to obtain generalized or specific
models for a given task? To address this gap, we introduce MARS, a web server
that makes PWM motif evaluation and ranking techniques accessible, supported
by a database of benchmark data and PWM models. How MARS meets Aniba’s
criteria is highlighted in italics – see introduction for details. We ensure MARS
can scale and evolve to support new data and algorithms via the modular design
of the algorithms and also by allowing users to upload their own benchmark
data. Additionally, CB-MAR allows for evaluation independence, and we have
demonstrated its relevance in motif discovery. Given that there is no agreed
standard of motif ranking, we offer the end user a variety of techniques and data
for their evaluations to ensure relevance to different evaluation conditions.
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Motif quality analysis requires systematic comparative
assessment

The TF binding spectra are quite diverse. Therefore, a comparative approach to
motif evaluation, using a variety of data and techniques, is necessary in order to
understand and make an informed decision on motif quality. For example, we
can identify difference in binding behaviour of Zbtb3 TF in vivo and in vitro by
correlating motif performance in PBM and ChIP-seq data (Figure 5); Zbtb3 is
known to recognize unmethylated motifs in vivo and methylated ones in
vitro [6]. Furthermore, we can discover that HMG TFs may also bind indirectly,
cooperatively or a variation of binding behaviour as captured in PBM data by a
low or negative correlation between CB-MAR and energy scoring derived ranks
(Figure 9). Indeed HMG TFs, specifically the SOX-related factors, are known to
bind cooperatively with partner TFs [17,19]. In fact, they are believed to form
complexes with partner proteins before recognizing the binding site [17].
Therefore, it is expected that the predicted models in PBM data would differ
from how they bind in vivo. These observations demonstrate the need for a
systematic approach to motif quality assessment.
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CB-MAR ranks capture in vivo binding behaviour

The data-free evaluation approach, CB-MAR, provides a quick and unbiased
motif evaluation alternative, especially when the data used in motif discovery is
also used for benchmarking. CB-MAR ranks are better correlated with those
based on ChIP-seq (R=0.88) than PBM (R=0.73) data, revealing its capability
to capture in vivo binding (Figures 3A and 9). We further support this
argument by using it to successfully identify best PWM models in motif
discovery. More details on this in the next section. This implementation reduces
the ‘reference motifs’ bias, an approach in which users considered an algorithm
successful if it can predict motifs similar to those in a ‘reference database’ at a
given (usually arbitrary) similarity threshold. The current collections of
ChIP-seq and PBM data in our database can only facilitate data-based quality
evaluation for less the 300 TFs out of 1352 that have motifs in our database.
This demonstrates that this approach is even more desirable.

Between the two motif comparison algorithms tested for CB-MAR, we show
that Tomtom captures in vivo motif ranks –using ChIP-seq data – better than
FISim. FISim is designed to favour similarity of high information or conserved
sites [11], revealing that scoring high IC sites better may not match biologically
similar motifs. Besides, low information flanking sites have been reported to
increases binding specificity in some TFs [10,16,21].

CB-MAR ranking useful in motif discovery

The first step after motif discovery is to filter and narrow down to significant
motifs. Usually, a partition of the data is held out for testing, but when there is
limited data this may not be feasible. Besides, this is only available to the
algorithm developers and to motifs generated using sequencing or microarray
data (e.g. promoter sequences, ChIP-seq and PBM) and not to those from TF
tertiary structures like 3DFootprint [9]. We have demonstrated that the top
performing motifs can be identified by CB-MAR in combination with motif
clustering to avoid motif duplicates. However, we do not average similar motifs
as done by GimmeMotifs. Rather, in a given cluster, the best ranking motif (by
similarity to the rest) is chosen. Motif averaging may produce a motif that does
not fit biology or reflect TF binding behaviours as demonstrated by the cases
where the GimmeMotifs identified motifs performed significantly worse than
CB-MAR (Figure 8B) – evaluated against ChIP-seq data.

Conclusions

We have developed MARS, a web server hosting a suite of tools for comparative
analysis available from www.bioinf.ict.ru.ac.za. This offers choice and
flexibility to users since additional test data and motifs can be uploaded, and we
do not impose an assessment approach to the users. A major contribution to
motif evaluation in this study is the data-independent consistency-based
approach (CB-MAR), which offers a good alternative in the absence of
benchmark sequence data. We believe that this web server and the algorithms
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implemented will help reduce motif redundancy and the continued dependence
of low quality ‘reference motifs’ due to lack of evaluation data. Our suite also
acts as a hub for the motifs collated and annotated from various databases and
publications.
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