1,216 research outputs found

    A storage and access architecture for efficient query processing in spatial database systems

    Get PDF
    Due to the high complexity of objects and queries and also due to extremely large data volumes, geographic database systems impose stringent requirements on their storage and access architecture with respect to efficient query processing. Performance improving concepts such as spatial storage and access structures, approximations, object decompositions and multi-phase query processing have been suggested and analyzed as single building blocks. In this paper, we describe a storage and access architecture which is composed from the above building blocks in a modular fashion. Additionally, we incorporate into our architecture a new ingredient, the scene organization, for efficiently supporting set-oriented access of large-area region queries. An experimental performance comparison demonstrates that the concept of scene organization leads to considerable performance improvements for large-area region queries by a factor of up to 150

    The Impact of Global Clustering on Spatial Database Systems

    Get PDF
    Global clustering has rarely been investigated in the area of spatial database systems although dramatic performance improvements can be achieved by using suitable techniques. In this paper, we propose a simple approach to global clustering called cluster organization. We will demonstrate that this cluster organization leads to considerable performance improvements without any algorithmic overhead. Based on real geographic data, we perform a detailed empirical performance evaluation and compare the cluster organization to other organization models not using global clustering. We will show that global clustering speeds up the processing of window queries as well as spatial joins without decreasing the performance of the insertion of new objects and of selective queries such as point queries. The spatial join is sped up by a factor of about 4, whereas non-selective window queries are accelerated by even higher speed up factors

    Towards a Holistic Integration of Spreadsheets with Databases: A Scalable Storage Engine for Presentational Data Management

    Full text link
    Spreadsheet software is the tool of choice for interactive ad-hoc data management, with adoption by billions of users. However, spreadsheets are not scalable, unlike database systems. On the other hand, database systems, while highly scalable, do not support interactivity as a first-class primitive. We are developing DataSpread, to holistically integrate spreadsheets as a front-end interface with databases as a back-end datastore, providing scalability to spreadsheets, and interactivity to databases, an integration we term presentational data management (PDM). In this paper, we make a first step towards this vision: developing a storage engine for PDM, studying how to flexibly represent spreadsheet data within a database and how to support and maintain access by position. We first conduct an extensive survey of spreadsheet use to motivate our functional requirements for a storage engine for PDM. We develop a natural set of mechanisms for flexibly representing spreadsheet data and demonstrate that identifying the optimal representation is NP-Hard; however, we develop an efficient approach to identify the optimal representation from an important and intuitive subclass of representations. We extend our mechanisms with positional access mechanisms that don't suffer from cascading update issues, leading to constant time access and modification performance. We evaluate these representations on a workload of typical spreadsheets and spreadsheet operations, providing up to 20% reduction in storage, and up to 50% reduction in formula evaluation time

    Branch-and-Bound Ranked Search by Minimizing Parabolic Polynomials

    Get PDF
    The Branch-and-Bound Ranked Search algorithm (BRS) is an efficient method for answering top-k queries based on R-trees using multivariate scoring functions. To make BRS effective with ascending rankings, the algorithm must be able to identify lower bounds of the scoring functions for exploring search partitions. This paper presents BRS supporting parabolic polynomials. These functions are common to minimize combined scores over different attributes and cover a variety of applications. To the best of our knowledge the problem to develop an algorithm for computing lower bounds for the BRS method has not been well addressed yet

    Quasi-Convex Scoring Functions in Branch-and-Bound Ranked Search

    Get PDF
    For answering top-k queries in which attributes are aggregated to a scalar value for defining a ranking, usually the well-known branch-and-bound principle can be used for efficient query answering. Standard algorithms (e.g., Branch-and-Bound Ranked Search, BRS for short) require scoring functions to be monotone, such that a top-k ranking can be computed in sublinear time in the average case. If monotonicity cannot be guaranteed, efficient query answering algorithms are not known. To make branch-and-bound effective with descending or ascending rankings (maximum top-k or minimum top-k queries, respectively), BRS must be able to identify bounds for exploring search partitions, and only for monotonic ranking functions this is trivial. In this paper, we investigate the class of quasi-convex functions used for scoring objects, and we examine how bounds for exploring data partitions can correctly and efficiently be computed for quasi-convex functions in BRS for maximum top-k queries. Given that quasi-convex scoring functions can usefully be employed for ranking objects in a variety of applications, the mathematical findings presented in this paper are indeed significant for practical top-k query answering

    Large Spatial Database Indexing with aX-tree

    Get PDF
    Spatial databases are optimized for the management of data stored based on their geometric space. Researchers through high degree scalability have proposed several spatial indexing structures towards this effect. Among these indexing structures is the X-tree. The existing X-trees and its variants are designed for dynamic environment, with the capability for handling insertions and deletions. Notwithstanding, the X-tree degrades on retrieval performance as dimensionality increases and brings about poor worst-case performance than sequential scan. We propose a new X-tree packing techniques for static spatial databases which performs better in space utilization through cautious packing. This new improved structure yields two basic advantage: It reduces the space overhead of the index and produces a better response time, because the aX-tree has a higher fan-out and so the tree always ends up shorter. New model for super-node construction and effective method for optimal packing using an improved str bulk-loading technique is proposed. The study reveals that proposed system performs better than many existing spatial indexing structure
    • 

    corecore