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1 Introduction
The management of spatial data in geographic information systems (GISs) gained increasing importance dur-
ing the last decade. Due to the high complexity of objects and queries and also due to extremely large data
volumes, geographic database systems impose stringent requirements on their storage and access architecture
with respect to efficient spatial query processing.

Geographic database systems are used in very different application environments. Therefore, it is not pos-
sible to find a compact set of operations fulfilling all requirements of geographic applications. But as de-
scribed in [BHKS 93], spatial selections are of great importance within the set of spatial queries and opera-
tions. They do not only represent an own query class, but also serve as a very important basis for the
operations such as the nearest neighbor query and the spatial join. Therefore, an efficient implementation of
spatial selections is an important requirement for good overall performance of the complete geographic data-
base system. The two main representatives of spatial selections are the point and the window query (see

figure 1):
 • Point query: Given a query point P and a set of objects M, the point

query yields all the objects of M geometrically containing P .
 • Window query: Given a rectilinear rectangle W and a set of objects

M, the window query yields all the objects of M sharing points with
W.

For the efficient processing of spatial queries, we present a multi-step-
procedure (see figure 5). The main goal of our spatial query proces-
sor is to reduce expensive steps by preprocessing operations in the
preceding steps which reduce the number of objects investigated in an
expensive step. In figure 5 expensive steps are marked with a “$”-
symbol.

A spatial selection is abstractly executed as a sequence of steps: First, we scale down the search space by
spatial indexing. A spatial access method (SAM) organizes pages containing sets of entries that consist of a
geometric key, an object identifier (ID) and a reference to the exact object geometry. Due to the arbitrary com-
plexity of real geographic objects, it is not advisable to build up an index using the complete geometric de-
scription of the objects as a key. Instead, approximations of the objects are used. Thus, the spatial access
method is not able to yield the exact result of a query. However, because of the high selectivity of spatial que-
ries a high number of objects is filtered out.

Pages containing results are transferred into main memory. If a page region fulfills the query condition
(e.g. the whole page region is contained in the query window), all entries of the page correspond to correct
answers of the query (hits). Otherwise, a page consists of entries which may fulfill the query. Therefore, we
must inspect these candidates using a geometric filter which tests the geometric key (or further approxima-
tions of the object geometry) against the query condition. As a result, we obtain three classes of objects: hits
fulfilling the query, false hits not fulfilling the query and candidates possibly fulfilling the query.

Now, we have to distinguish two cases: In the first case, we are only interested in the object identifiers.
Then, the hits are a subset of the set of answers (in figure 5 case 1 is indicated by a striped arrow). Only the
candidates have to be transferred into main memory for further processing. In the other case, we require the
complete object geometry as an answer to the query. Therefore, we need a transfer of the exact geometry of
hits and candidates into main memory. The transfer of exact geometry may be very expensive because the
exact representation of an object can be large (compare e.g. [BHKS 93]) and additionally for large window
queries, large numbers of objects have to be transferred. In window queries the transferred objects are spa-
tially adjacent. A physically contiguous storage of spatially adjacent objects is necessary to support a fast set-
oriented access by the I/O-transfer unit.

The other expensive step is processing the exact geometry of an object. After filtering we have to investi-
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 Figure 1: Examples of spatial selections
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gate the remaining candidates. Using complex computational
geometry algorithms, it is finally decided whether a candidate
fulfills the query or not.

In order to reduce query time, we have to reduce the cost
for the expensive operations and to refine preceding steps. In
this paper, we present several techniques realizing these
goals. First, we shortly discuss spatial access methods to scale
down the search space efficiently. In section 3, geometric fil-
tering techniques using several approximations are proposed.
Afterwards, the efficient transfer of the exact geometry is dis-
cussed. The exact geometry processing supported by decom-
position is topic of section 5. The paper concludes with a pre-
sentation of a concrete spatial query processor and
suggestions for future work. We would like to emphasize that
all presented techniques have been implemented and tested
with real cartography data.

2 Scaling down the search space
Considering spatial selections in more detail, it turns out that
generally a small and locally restricted part of the complete
search space has to be investigated. For an efficient scaling
down of the search space, it is essential to use spatial access
methods (SAMs) because high volumes of data have to be or-
ganized. Access methods as a part of the internal level of a da-
tabase system are used to organize a dynamic set of objects
on secondary storage. One-dimensional access methods like
B-trees or linear hashing are not suitable for geographic data-
base systems. For these systems, we have to provide data
structures which organize the spatial objects with respect to
their location and extension in the data space. Because of the
arbitrary complexity of spatial objects, access methods for

simpler two-dimensional objects like minimum bounding boxes are widely discussed in the literature, e.g. the
grid file, the quadtree, the buddy tree, the R-tree, and the R*-tree. Samet provides an excellent survey
[Sam 90] of almost all of these methods.

Simply stated, SAMs are based on point access methods using one of three techniques [SK 88]: Clipping
partitions the data space into disjoint regions. The objects are associated with each of the regions they inter-
sect and thus one object is stored in each of the corresponding blocks. In general, the technique of clipping
may degrade query performance substantially since the number of objects (copies) to be stored increases
which in turn increases the number of regions and thereby increasing the number of copies - a vicious circle.
The transformation technique views an object as a point in some parameter space. Since transformations do
not preserve the spatial neighborhood of objects in the original space, and since the distribution of parameter
points is extremely skewed, the query efficiency tends to be quite low. The third technique is overlapping
regions. In this technique each object is assigned to exactly one region. However, there may exist several re-
gions potentially containing the searched object. 

Performance comparisons (e.g. [KSSS 89], [HS 92]) demonstrate that the well-known SAMs do not sig-
nificantly differ in performance.We favor the R*-tree [BKSS 90], an improved variant of the well-known R-
tree [Gut 84], because it is a simple, robust, and efficient spatial access method. This has been demonstrated
in tests [BKSS 90] and in a comparison with other access methods [HS 92]. The R*-tree uses the technique
of overlapping regions and demonstrates that it is possible to organize spatial objects such that the overlap of
the regions in the directory is extremely small. From our point of view, further research in SAMs will improve
the overall-performance of query processing only marginally. Therefore, additional concepts have to be inte-
grated into a geographic database system for improving its query performance.

3 Geometric filtering by approximations
As described above, spatial objects are organized and accessed by SAMs using geometric keys which main-
tain the most important features of the objects (position and extension). The smallest aligned rectangle en-
closing an object, the minimum bounding box (BB), is the most popular geometric key. Using the BB the com-
plexity of an object is reduced to four parameters. Inspecting the BBs of the candidates against the spatial
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query condition, we obtain three classes of objects: hits fulfilling the query, false hits not fulfilling the query
and remaining candidates possibly fulfilling the query (see figure 5).

Using BBs provides a fast but inaccurate filter for the response set. The larger the area of the BB differs
from the area of the original object, the more inaccurate is the geometric filtering, i.e. the candidate set in-
cludes a lot of false hits and the number of identified hits is very small. 

In order to get expressive and realistic results on the quality of the approximation when BBs are used, we
investigated simple polygons with holes of various real maps. To be as general as possible, we used maps
from different sources with different resolutions. The data files contain natural objects such as islands and
lakes as well as administrative areas such as counties. Figure 3 depicts the analysed maps.

 Figure 3: The analysed maps

In the literature, several alternatives are proposed to measure the quality of approximations. In our application
we are interested in measuring the accuracy of the geometric filter. The accuracy of the filter step is maxi-
mized by minimizing the deviation of the approximation from the original object. This deviation is measured
by the false area of the approximation normalized to the area of the approximated object. Table 1 shows im-
pressively that real cartography objects are only roughly approximated by BBs. 

This investigation was the starting point to look for other approximations which have a better approximation
quality than the BB. Approximations of objects which are used for geometric filtering should be simple to
provide a fast filter (simplicity criterion) and they should have a high approximation quality (quality criteri-
on) to reduce the number of false hits and to identify as many final answers as possible. In our point of view
only convex, straight line bordered approximations which can be represented by a small number of parame-
ters are suitable candidates. Therefore, we tested the rotated bounding box (RBB), the convex hull (CH), the
minimal enclosing convex 4-corner (4-C) and the 5-corner (5-C). 

 Figure 4: Different tested approximations

In [BKS 93a] we presented a detailed empirical investigation. The measured approximation qualities were
almost independent of the various tested maps. Let us emphasize that this result is very interesting because
we used maps from different sources with different resolutions (see figure 3). A clear order of rank turned
out. Naturally, the convex hull has the best approximation quality (24 % false area), followed by the 5-corner
(33 %), the 4-corner (44 %) and the rotated box (62 %). Compared to the minimum bounding box (93 %),
clear gains of approximation quality were obtained. Obviously, the more parameters are used for the repre-
sentation of an approximation, the better is the approximation quality. The results show that the approxima-
tion quality of the 5-corner is nearly the same as that of the convex hull. However, the storage requirement of
convex hulls varies extremely and is on the average much higher than the storage requirement of the other

min max μ σ/μ
 • μ is the average of false area
 • σ/μ is the standard variation normalized to μ
 • min and max denotes the minimum and the maxi-

mum deviation of the area of the BB from the area of 
the corresponding polygon occurring in the map, re-
spectively.

Europe 0.25 21.14 0.93 0.21

BW 0.20 5.01 0.93 0.18

Lakes 0.21 22.11 0.97 0.32

Africa 0.34 5.64 0.89 0.23

 Table 1: False area of the BB-approximation 
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approximations. The RBB reduces the false area by 31 percentage points compared to the BB, although only
one additional parameter is used. The 5-corner needs 6 additional parameters compared to the BB paying off
in 60 percentage gain over the average false area of the BB. Summarizing, we can state that the 5-corner yields
the best trade-off between additional storage requirement and improvement of approximation quality.

In order to integrate the 5-corner in geometric filtering of spatial query processing two different ways can
be followed. First, the common BB remains the geometric key and the 5-corner is additionally stored in the
data pages of the SAM. The advantage of this approach is obvious. The approximation quality is improved
and all the known SAMs based on BBs can be used. Second, we use the 5-corner as the geometric key and
the BB is not stored anymore. Doing this we save storage, but SAMs using the transformation technique are
not suitable. 

In [BKS 93a] we have shown that the 5-corner approximation can efficiently be organized in the R*-tree,
a spatial access method originally designed for bounding boxes. The simplicity and robustness of the spatial
access method is preserved, because in the directory simple bounding boxes are organized and only in the
data blocks more complex approximations are stored. Obviously, in the filter step approximations other than
the minimum bounding box need more block accesses when traversing the SAM because of their higher stor-
age requirement and their higher extension in x- and y-direction. However, the reduced number of false hits
due to higher approximation quality results in a substantial gain in the geometry processor by avoiding time
intensive computational geometry algorithms. This gain clearly exceeds the slightly higher access costs.

4 Transfer of the geometry into main memory
Most SAMs proposed up to now accommodate object approximations or a small number spatial objects in
their data pages. However, the pages storing the geometry of spatially adjacent objects are distributed arbi-
trarily over the secondary storage. Typical window queries require the contents of many pages to be retrieved
from the database. This is much more expensive for arbitrarily distributed pages than for physically contigu-
ous pages because the search time of a page on disk is much higher than the transfer time and because phys-
ically contiguous pages can be transferred by one set-oriented disk access into main memory.
Basically, we distinguish three models for storing large sets of spatial objects:
 1. Storing the exact object geometry outside of the spatial access method, e.g. in a sequential file. The main

advantage of this scheme is the large number of approximations stored together in one data page. A fun-
damental drawback is the fact that the clustering just refers to the object approximations and not to the
objects themselves. Consequently, when processing window queries, each access to an exact object ge-
ometry needs additional expensive search time.

 2. Storing the exact object geometry inside the data pages of the spatial access method. Thus, spatial neigh-
borhood is physically preserved at the level of exact object geometry. Objects within one data page are
transferred into main memory just using one disk access. An essential drawback of this approach is the
low number of objects fitting into one page. As a consequence, adjacent objects are often stored in differ-
ent pages and clustering is restricted by the page size which is about 4 kbyte.

 3. Our new approach, the scene organization, associates the geometry of spatially adjacent objects to sets of
physically contiguous pages. These sets are derived from a slightly modified R*-tree and are called
scenes. A scene is described by a minimum bounding box. The geometric keys (and additional approxi-
mations) are organized in R*-trees as before. The scene organization allows dynamic changes of the da-
tabase, supports large range queries as well as small queries, assures that a maximum scene size is not
exceeded, and strives for a stable average scene size and a high storage utilization. A detailed algorithmic
description of the scene organization is given in [BKS 93b]. A window query proceeds as follows: All
scenes intersecting the query window are determined. If the degree of overlap between the scene and the
query window is smaller than a heuristically determined query threshold, the window query is processed
using the mechanism depicted in figure 5. Otherwise, the scene is completely transferred into main mem-
ory using the fast set-I/O. Unfortunately, a scene may contain a number of false hits unnecessarily trans-
ferred into main memory. However, a relatively small number of false hits does not affect performance
considerably, since the time needed for searching a page exceeds drastically the time for transferring a
page. After transferring the scene into main memory, the query works as usual without the transfer step
after filtering. The sequence of steps is depicted in figure 5.

In order to evaluate the scene organization, we carried out a detailed empirical performance comparison of
the three models using real test data. The database consists of 119,151 objects with an average size of 956
bytes. The page capacity was 4 kbyte and we tested point queries and 5 series of window queries with an area
of the query window between 0.0625% and 16% of the data space. We weighted the cost for searching a page
on disk by a factor of 10 to the relative cost of a page transfer.

As expected with increasing scene size the search cost decreases and the transfer cost increases. The opti-
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mal scene size which leads to minimum access cost depends on the size of the queries. The larger the queries,
the larger is the optimal scene size. However, this dependency is not very strong. In our tests there is a factor
of 256 in the size of the query windows, but only a factor of 8 in the resulting optimal scene sizes. Addition-
ally, the graphs for the cost functions are rather flat in the proximity of their minimum. Thus, a maximum
scene size of 192 kbyte is almost optimal for all our test series.

We also investigated the performance improvement of the scene organization in comparison to the other
two approaches. To compare the clustering of our scene organization with the other models, the access cost
for point queries is a suitable measure. In the scene organization the cost of point queries is very close to the
cost of the two other models. That means that the modifications of the R*-tree have almost no effect on its
space partitioning. In table 2, a comparison of the access cost of the three models is presented by describing
the speed up factor for query processing using the model 2 and 3 in comparison to model 1.

Storing the exact object geometry inside the data pages (model 2) speeds up query processing by a factor of
2.3 to 2.9 in comparison to model 1 which stores the exact geometry outside of the data pages. The scene
organization is the clear winner of the performance comparison. Even the processing of small window queries
is performed considerably faster by this organization model. For small queries, we have a speed up factor of
about 6.5 (in comparison to model 1) which is increasing to the value of 30.6 for large queries.

5 Exact investigation of the geometry
Geometric filtering is based on object approximation and therefore determines a set of candidate objects that
may fulfil the query condition. The geometry processor tests whether a candidate object actually fulfils the
query condition or not. This step is very time consuming and dominates spatial indexing and geometric fil-
tering in many applications (see [BZ 91]). Algorithms from the area of computational geometry are proposed
to overcome this time bottleneck. Different specialized data structures and techniques, such as plane sweep
or divide-and-conquer, are used to design efficient algorithms for the different spatial queries and operations.

Due to the complexity of the objects on the one hand and the selectivity of spatial queries on the other hand,
it is useful to decompose the objects into simpler components because the decomposition substitutes complex
computational geometry algorithms by multiple calls of simple and fast algorithms. The success of such pro-
cessing depends on the ability to narrow down quickly the set of components that are affected by the spatial
queries and operations. The performance comparisons in  [KHS 91] demonstrate that decomposition tech-
niques outperform the traditional undecomposed representation up to one order of magnitude for high selec-
tivity queries.

In [SK 91] we proposed a new representation of a polygonal object, called the TR*-tree that efficiently
supports various types of spatial queries and operations. The TR*-tree is a dynamic data structure that is per-
sistently stored on secondary storage and is completely loaded to main memory for spatial query processing.

In our approach, we efficiently support the average case of various types of queries and operations in real
applications where only one single representation of the objects is used. We decompose in a preprocessing
step the polygonal objects into a minimum set of disjoint trapezoids using the plane-sweep algorithm pro-
posed by Asano & Asano [AA 83]. However, we cannot define a complete spatial order on the set of trape-
zoids that are generated by this decomposition process. Thus binary search on these trapezoids is not possible.
Therefore, we propose to use the R*-tree for the spatial search. Due to its tree structure, the R*-tree permits
logarithmic searching in the average case but due to the overlap within its directory the search is not restricted
to one path and thus logarithmic search time cannot be guaranteed in the worst case. The R*-tree was de-
signed as a spatial access method for secondary storage. In order to speed up the queries and operations men-
tioned above, we developed the TR*-tree, a variant of the R*-tree, designed to minimize the main memory
operations and to store the trapezoids of the decomposed objects as complete objects without approximating
them by minimum bounding boxes.

The performance of the TR*-tree cannot be analytically proven because the TR*-tree is a data structure
that uses heuristic optimization strategies. Therefore, we documented the performance of the TR*-tree in an
experimental analysis investigating synthetically generated data as well as real cartography data in a system-
atic framework. For example, a point query on objects with 2,500 vertices is answered performing 20 point-
in-BB-tests and 3 point-in-trapezoid-tests. For a detailed performance analysis the interested reader is re-
ferred to [SK 91].

size of query windows (in % of data space): 0.0625% 0.25% 1% 4% 16%

model 2: geometry inside of the data pages 2.3 2.5 2.6 2.8 2.9

model 3: scene organization 6.5 11.7 18.6 25.4 30.6

 Table 2:  Speed up factors for window queries in comparison to model 1 (geometry outside of the data pages)
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6 Summary and future work
In the previous sections, we presented a number of tech-
niques for reducing query time. Figure 5 depicts our spatial
query processor consisting of several building blocks using
these techniques. The R*-tree is used as a simple, robust, and
efficient spatial index. Our performance comparison of ap-
proximations yields that the 5-corner is the best trade-off be-
tween additional storage requirement and improvement of
approximation quality. Therefore, it is employed as a geo-
metric filter. In order to reduce the I/O-cost for window que-
ries retrieving the object geometry, we integrated the scene
organization. If the degree of overlap between a scene and a
query window is smaller than the query threshold, the com-
plete scene is transferred into main memory using a fast set-
I/O device. Otherwise, the R*-tree is completely traversed
and the object geometry of candidates (and if necessary for
hits) is transferred after filtering. The exact geometry proces-
sor is realized by TR*-trees organizing decomposed objects.

In our future work, we want to apply the presented tech-
niques for efficient spatial join processing. A first approach
is presented in [BKS 93c]. Within this framework, it is nec-
essary to investigate progressive approximations describing
the kernel of an object and to compare the performance of the
TR*-tree to computational geometry techniques.The applica-
tion of the presented techniques to 3D-objects is another in-
teresting area of research activities in the future. For exam-
ple, bio-computing is an important field of application for
3D-spatial objects. The first step in this direction is the devel-
opment and implementation of 3D-approximation and de-
composition techniques.References
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