6 research outputs found

    Data Encryption and Hashing Schemes for Multimedia Protection

    Get PDF
    There are millions of people using social networking sites like Facebook, Google+, and Youtube every single day across the entire world for sharing photos and other digital media. Unfortunately, sometimes people publish content that does not belong to them. As a result, there is an increasing demand for quality software capable of providing maximum protection for copyrighted material. In addition, confidential content such as medical images and patient records require high level of security so that they can be protected from unintended disclosure, when transferred over the Internet. On the other hand, decreasing the size of an image without significant loss in quality is always highly desirable. Hence, the need for efficient compression algorithms. This thesis introduces a robust method for image compression in the shearlet domain. Motivated by the outperformance of the Discrete Shearlet Transform (DST) compared to the Discrete Wavelet Transform (DWT) in encoding the directional information in images, we propose a DST-based compression algorithm that provides not only a better quality in terms of image approximation and compression ratio, but also increases the security of images via the Advanced Encryption Standard. Experimental results on a slew of medical images illustrate an improved performance in image quality of the proposed approximation approach in comparison to DWT, and also demonstrate its robustness against a variety of tests, including randomness, entropy, key sensitivity, and input sensitivity. We also present a 3D mesh hashing technique using spectral graph theory. The main idea is to partition a 3D model into sub-meshes, followed by the generation of the Laplace-Beltrami matrix of each sub-mesh, and the application of eigen-decomposition. This, in turn, is followed by the hashing of each sub-mesh using Tsallis entropy. The experimental results using a benchmark 3D models demonstrate the effectiveness of the proposed hashing scheme

    Randomness Enhancement Using Digitalized Modified Logistic Map

    No full text
    [[abstract]]In this brief, a nonlinear digitalized modified logistic map-based pseudorandom number generator (DMLM-PRNG) is proposed for randomness enhancement. Two techniques, i.e., constant parameter selection and output sequence scrambling, are employed to reduce the computation cost without sacrificing the complexity of the output sequence. Statistical test results show that with only one multiplication, DMLM-PRNG passes all cases in SP800-22. Moreover, it passes most of the cases in Crush, one of the test suites of TesuU01. When compared with solutions based on digitized pseudochaotic maps previously proposed in the literature, in terms of randomness quality, our system is as good as a Renyi-map-based PRNG and better than a logistic-map-based PRNG. Moreover, compared with solutions based on a Renyi-map-based PRNG, DMLM-PRNG is better scalable to high digital resolutions with reasonable area overhead.[[fileno]]2030202010031[[department]]資訊工程學

    Digital Design of New Chaotic Ciphers for Ethernet Traffic

    Get PDF
    Durante los últimos años, ha habido un gran desarrollo en el campo de la criptografía, y muchos algoritmos de encriptado así como otras funciones criptográficas han sido propuestos.Sin embargo, a pesar de este desarrollo, hoy en día todavía existe un gran interés en crear nuevas primitivas criptográficas o mejorar las ya existentes. Algunas de las razones son las siguientes:• Primero, debido el desarrollo de las tecnologías de la comunicación, la cantidad de información que se transmite está constantemente incrementándose. En este contexto, existen numerosas aplicaciones que requieren encriptar una gran cantidad de datos en tiempo real o en un intervalo de tiempo muy reducido. Un ejemplo de ello puede ser el encriptado de videos de alta resolución en tiempo real. Desafortunadamente, la mayoría de los algoritmos de encriptado usados hoy en día no son capaces de encriptar una gran cantidad de datos a alta velocidad mientras mantienen altos estándares de seguridad.• Debido al gran aumento de la potencia de cálculo de los ordenadores, muchos algoritmos que tradicionalmente se consideraban seguros, actualmente pueden ser atacados por métodos de “fuerza bruta” en una cantidad de tiempo razonable. Por ejemplo, cuando el algoritmo de encriptado DES (Data Encryption Standard) fue lanzado por primera vez, el tamaño de la clave era sólo de 56 bits mientras que, hoy en día, el NIST (National Institute of Standards and Technology) recomienda que los algoritmos de encriptado simétricos tengan una clave de, al menos, 112 bits. Por otro lado, actualmente se está investigando y logrando avances significativos en el campo de la computación cuántica y se espera que, en el futuro, se desarrollen ordenadores cuánticos a gran escala. De ser así, se ha demostrado que algunos algoritmos que se usan actualmente como el RSA (Rivest Shamir Adleman) podrían ser atacados con éxito.• Junto al desarrollo en el campo de la criptografía, también ha habido un gran desarrollo en el campo del criptoanálisis. Por tanto, se están encontrando nuevas vulnerabilidades y proponiendo nuevos ataques constantemente. Por consiguiente, es necesario buscar nuevos algoritmos que sean robustos frente a todos los ataques conocidos para sustituir a los algoritmos en los que se han encontrado vulnerabilidades. En este aspecto, cabe destacar que algunos algoritmos como el RSA y ElGamal están basados en la suposición de que algunos problemas como la factorización del producto de dos números primos o el cálculo de logaritmos discretos son difíciles de resolver. Sin embargo, no se ha descartado que, en el futuro, se puedan desarrollar algoritmos que resuelvan estos problemas de manera rápida (en tiempo polinomial).• Idealmente, las claves usadas para encriptar los datos deberían ser generadas de manera aleatoria para ser completamente impredecibles. Dado que las secuencias generadas por generadores pseudoaleatorios, PRNGs (Pseudo Random Number Generators) son predecibles, son potencialmente vulnerables al criptoanálisis. Por tanto, las claves suelen ser generadas usando generadores de números aleatorios verdaderos, TRNGs (True Random Number Generators). Desafortunadamente, los TRNGs normalmente generan los bits a menor velocidad que los PRNGs y, además, las secuencias generadas suelen tener peores propiedades estadísticas, lo que hace necesario que pasen por una etapa de post-procesado. El usar un TRNG de baja calidad para generar claves, puede comprometer la seguridad de todo el sistema de encriptado, como ya ha ocurrido en algunas ocasiones. Por tanto, el diseño de nuevos TRNGs con buenas propiedades estadísticas es un tema de gran interés.En resumen, es claro que existen numerosas líneas de investigación en el ámbito de la criptografía de gran importancia. Dado que el campo de la criptografía es muy amplio, esta tesis se ha centra en tres líneas de investigación: el diseño de nuevos TRNGs, el diseño de nuevos cifradores de flujo caóticos rápidos y seguros y, finalmente, la implementación de nuevos criptosistemas para comunicaciones ópticas Gigabit Ethernet a velocidades de 1 Gbps y 10 Gbps. Dichos criptosistemas han estado basados en los algoritmos caóticos propuestos, pero se han adaptado para poder realizar el encriptado en la capa física, manteniendo el formato de la codificación. De esta forma, se ha logrado que estos sistemas sean capaces no sólo de encriptar los datos sino que, además, un atacante no pueda saber si se está produciendo una comunicación o no. Los principales aspectos cubiertos en esta tesis son los siguientes:• Estudio del estado del arte, incluyendo los algoritmos de encriptado que se usan actualmente. En esta parte se analizan los principales problemas que presentan los algoritmos de encriptado standard actuales y qué soluciones han sido propuestas. Este estudio es necesario para poder diseñar nuevos algoritmos que resuelvan estos problemas.• Propuesta de nuevos TRNGs adecuados para la generación de claves. Se exploran dos diferentes posibilidades: el uso del ruido generado por un acelerómetro MEMS (Microelectromechanical Systems) y el ruido generado por DNOs (Digital Nonlinear Oscillators). Ambos casos se analizan en detalle realizando varios análisis estadísticos a secuencias obtenidas a distintas frecuencias de muestreo. También se propone y se implementa un algoritmo de post-procesado simple para mejorar la aleatoriedad de las secuencias generadas. Finalmente, se discute la posibilidad de usar estos TRNGs como generadores de claves. • Se proponen nuevos algoritmos de encriptado que son rápidos, seguros y que pueden implementarse usando una cantidad reducida de recursos. De entre todas las posibilidades, esta tesis se centra en los sistemas caóticos ya que, gracias a sus propiedades intrínsecas como la ergodicidad o su comportamiento similar al comportamiento aleatorio, pueden ser una buena alternativa a los sistemas de encriptado clásicos. Para superar los problemas que surgen cuando estos sistemas son digitalizados, se proponen y estudian diversas estrategias: usar un sistema de multi-encriptado, cambiar los parámetros de control de los sistemas caóticos y perturbar las órbitas caóticas.• Se implementan los algoritmos propuestos. Para ello, se usa una FPGA Virtex 7. Las distintas implementaciones son analizadas y comparadas, teniendo en cuenta diversos aspectos tales como el consumo de potencia, uso de área, velocidad de encriptado y nivel de seguridad obtenido. Uno de estos diseños, se elige para ser implementado en un ASIC (Application Specific Integrate Circuit) usando una tecnología de 0,18 um. En cualquier caso, las soluciones propuestas pueden ser también implementadas en otras plataformas y otras tecnologías.• Finalmente, los algoritmos propuestos se adaptan y aplican a comunicaciones ópticas Gigabit Ethernet. En particular, se implementan criptosistemas que realizan el encriptado al nivel de la capa física para velocidades de 1 Gbps y 10 Gbps. Para realizar el encriptado en la capa física, los algoritmos propuestos en las secciones anteriores se adaptan para que preserven el formato de la codificación, 8b/10b en el caso de 1 Gb Ethernet y 64b/10b en el caso de 10 Gb Ethernet. En ambos casos, los criptosistemas se implementan en una FPGA Virtex 7 y se diseña un set experimental, que incluye dos módulos SFP (Small Form-factor Pluggable) capaces de transmitir a una velocidad de hasta 10.3125 Gbps sobre una fibra multimodo de 850 nm. Con este set experimental, se comprueba que los sistemas de encriptado funcionan correctamente y de manera síncrona. Además, se comprueba que el encriptado es bueno (pasa todos los test de seguridad) y que el patrón del tráfico de datos está oculto.<br /
    corecore