6,022 research outputs found

    Randomized protocols for asynchronous consensus

    Full text link
    The famous Fischer, Lynch, and Paterson impossibility proof shows that it is impossible to solve the consensus problem in a natural model of an asynchronous distributed system if even a single process can fail. Since its publication, two decades of work on fault-tolerant asynchronous consensus algorithms have evaded this impossibility result by using extended models that provide (a) randomization, (b) additional timing assumptions, (c) failure detectors, or (d) stronger synchronization mechanisms than are available in the basic model. Concentrating on the first of these approaches, we illustrate the history and structure of randomized asynchronous consensus protocols by giving detailed descriptions of several such protocols.Comment: 29 pages; survey paper written for PODC 20th anniversary issue of Distributed Computin

    From Symmetric to Asymmetric Asynchronous Byzantine Consensus

    Get PDF
    Consensus is arguably one of the most important notions in distributed computing. Among asynchronous, randomized, and signature-free implementations, the protocols of Most\'efaoui et al. (PODC 2014 and JACM 2015) represent a landmark result, which has been extended later and taken up in practical systems. The protocols achieve optimal resilience and takes, in expectation, only a constant expected number of rounds of quadratic message complexity. Randomization is provided through a common-coin primitive. In traditional consensus protocols, all involved processes adhere to a global, symmetric failure model, typically only defined by bounds on the number of faulty processes. Motivated by applications to blockchains, however, more flexible trust assumptions have recently been considered. In particular, with asymmetric trust, a process is free to choose which other processes it trusts and which ones might collude against it. This paper revisits the optimal asynchronous protocol of Most\'efaoui et al. and shows how to realize it with asymmetric trust. The paper starts by pointing out in detail why some versions of this protocol may violate liveness. Then it proposes a fix for the protocol that does not affect its properties, but lets it regain the simplicity of its original version (PODC 2014). At the same time, the paper shows how to realize randomized signature-free asynchronous Byzantine consensus with asymmetric quorums. This results in an optimal consensus protocol with subjective, asymmetric trust and constant expected running time. It is suitable for applications to blockchains, for instance

    Distributed Computing with Adaptive Heuristics

    Full text link
    We use ideas from distributed computing to study dynamic environments in which computational nodes, or decision makers, follow adaptive heuristics (Hart 2005), i.e., simple and unsophisticated rules of behavior, e.g., repeatedly "best replying" to others' actions, and minimizing "regret", that have been extensively studied in game theory and economics. We explore when convergence of such simple dynamics to an equilibrium is guaranteed in asynchronous computational environments, where nodes can act at any time. Our research agenda, distributed computing with adaptive heuristics, lies on the borderline of computer science (including distributed computing and learning) and game theory (including game dynamics and adaptive heuristics). We exhibit a general non-termination result for a broad class of heuristics with bounded recall---that is, simple rules of behavior that depend only on recent history of interaction between nodes. We consider implications of our result across a wide variety of interesting and timely applications: game theory, circuit design, social networks, routing and congestion control. We also study the computational and communication complexity of asynchronous dynamics and present some basic observations regarding the effects of asynchrony on no-regret dynamics. We believe that our work opens a new avenue for research in both distributed computing and game theory.Comment: 36 pages, four figures. Expands both technical results and discussion of v1. Revised version will appear in the proceedings of Innovations in Computer Science 201

    On the Round Complexity of Randomized Byzantine Agreement

    Get PDF
    We prove lower bounds on the round complexity of randomized Byzantine agreement (BA) protocols, bounding the halting probability of such protocols after one and two rounds. In particular, we prove that: 1) BA protocols resilient against n/3 [resp., n/4] corruptions terminate (under attack) at the end of the first round with probability at most o(1) [resp., 1/2+ o(1)]. 2) BA protocols resilient against n/4 corruptions terminate at the end of the second round with probability at most 1-Theta(1). 3) For a large class of protocols (including all BA protocols used in practice) and under a plausible combinatorial conjecture, BA protocols resilient against n/3 [resp., n/4] corruptions terminate at the end of the second round with probability at most o(1) [resp., 1/2 + o(1)]. The above bounds hold even when the parties use a trusted setup phase, e.g., a public-key infrastructure (PKI). The third bound essentially matches the recent protocol of Micali (ITCS\u2717) that tolerates up to n/3 corruptions and terminates at the end of the third round with constant probability

    On the Complexity of Asynchronous Gossip

    Get PDF
    In this paper, we study the complexity of gossip in an asynchronous, message-passing fault-prone distributed system. In short, we show that an adaptive adversary can significantly hamper the spreading of a rumor, while an oblivious adversary cannot. In the latter case, we present three randomized algorithms for achieving gossip, each offering a different trade-off between time and message complexity. We then show how to use these gossip algorithms to develop message-efficient asynchronous (randomized) consensus protocols

    The Contest Between Simplicity and Efficiency in Asynchronous Byzantine Agreement

    Full text link
    In the wake of the decisive impossibility result of Fischer, Lynch, and Paterson for deterministic consensus protocols in the aynchronous model with just one failure, Ben-Or and Bracha demonstrated that the problem could be solved with randomness, even for Byzantine failures. Both protocols are natural and intuitive to verify, and Bracha's achieves optimal resilience. However, the expected running time of these protocols is exponential in general. Recently, Kapron, Kempe, King, Saia, and Sanwalani presented the first efficient Byzantine agreement algorithm in the asynchronous, full information model, running in polylogarithmic time. Their algorithm is Monte Carlo and drastically departs from the simple structure of Ben-Or and Bracha's Las Vegas algorithms. In this paper, we begin an investigation of the question: to what extent is this departure necessary? Might there be a much simpler and intuitive Las Vegas protocol that runs in expected polynomial time? We will show that the exponential running time of Ben-Or and Bracha's algorithms is no mere accident of their specific details, but rather an unavoidable consequence of their general symmetry and round structure. We define a natural class of "fully symmetric round protocols" for solving Byzantine agreement in an asynchronous setting and show that any such protocol can be forced to run in expected exponential time by an adversary in the full information model. We assume the adversary controls tt Byzantine processors for t=cnt = cn, where cc is an arbitrary positive constant <1/3< 1/3. We view our result as a step toward identifying the level of complexity required for a polynomial-time algorithm in this setting, and also as a guide in the search for new efficient algorithms.Comment: 21 page

    Consensus with Max Registers

    Get PDF
    We consider the problem of implementing randomized wait-free consensus from max registers under the assumption of an oblivious adversary. We show that max registers solve m-valued consensus for arbitrary m in expected O(log^* n) steps per process, beating the Omega(log m/log log m) lower bound for ordinary registers when m is large and the best previously known O(log log n) upper bound when m is small. A simple max-register implementation based on double-collect snapshots translates this result into an O(n log n) expected step implementation of m-valued consensus from n single-writer registers, improving on the best previously-known bound of O(n log^2 n) for single-writer registers

    Fast Deterministic Consensus in a Noisy Environment

    Full text link
    It is well known that the consensus problem cannot be solved deterministically in an asynchronous environment, but that randomized solutions are possible. We propose a new model, called noisy scheduling, in which an adversarial schedule is perturbed randomly, and show that in this model randomness in the environment can substitute for randomness in the algorithm. In particular, we show that a simplified, deterministic version of Chandra's wait-free shared-memory consensus algorithm (PODC, 1996, pp. 166-175) solves consensus in time at most logarithmic in the number of active processes. The proof of termination is based on showing that a race between independent delayed renewal processes produces a winner quickly. In addition, we show that the protocol finishes in constant time using quantum and priority-based scheduling on a uniprocessor, suggesting that it is robust against the choice of model over a wide range.Comment: Typographical errors fixe
    • …
    corecore