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Abstract
We consider the problem of implementing randomized wait-free consensus from max registers under
the assumption of an oblivious adversary. We show that max registers solve m-valued consensus
for arbitrary m in expected O(log∗ n) steps per process, beating the Ω

( log m
log log m

)
lower bound for

ordinary registers when m is large and the best previously known O(log log n) upper bound when m

is small. A simple max-register implementation based on double-collect snapshots translates this
result into an O(n log n) expected step implementation of m-valued consensus from n single-writer
registers, improving on the best previously-known bound of O(n log2 n) for single-writer registers.
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1 Introduction

Most work on randomized wait-free shared-memory consensus, dating back to the initial
papers of Abrahamson [1] and Chor, Israeli, and Li [13], assumes either single-writer or
multi-writer atomic registers as the base object provided by the system. Atomic registers
have consensus number 1 [19], meaning they can solve consensus deterministically for no
more than one process [21]. They are also assumed to be available by default when computing
the consensus number of an object [19, 20]. This makes them the weakest object that is
usually considered when solving shared-memory consensus. But there are other objects that
also have consensus number 1 that may provide better performance than registers when
implementing randomized consensus for many processes.

We examine the power of consensus protocols built from max registers, which are
register-like objects for which the writeMax operation writes values, and the readMax
operation returns the largest value previously written [6]. We show that against an oblivious
adversary, the expected individual step complexity of binary consensus can be improved
from O(log logn) [5] using standard registers to O(log∗ n) using max registers, closing the
gap between the best previously known upper bounds for consensus and the closely-related
problem of test-and-set [16].

Consensus protocols built from max registers also tolerate more than two possible input
values better than those built from atomic registers. We show that max registers can
implement an m-valued adopt-commit object [2, 15, 22] in O(1) steps using O(1) max
registers. Adopt-commit objects can be derived from any shared-memory consensus protocol,
and there is a tight Ω(logm/ log logm) lower bound on the individual step complexity
of implementations of adopt-commit objects from atomic registers that carries over to
consensus [8]. Using max registers, we can avoid this lower bound and obtain m-valued
consensus for any m while still getting O(log∗ n) individual step complexity.
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1:2 Consensus with Max Registers

By implementing a max register from single-writer registers accessed via collects (in
which a process sequentially reads n registers, one for each process), we can get consensus
for single-writer registers in O(n logn) expected steps per process. This improves on the
previous best known O(n log2 n) upper bound [10] for single-writer registers, although at the
cost of weakening the adversary from adaptive to oblivious. It also gets close to the Ω(n)
lower bound on the worst-case expected individual step complexity that follows immediately
from the need for the first process to check the registers belonging to all other processes.
We suspect that further improvements may be possible through a more careful analysis of
how maximum values interact with collects, but this analysis is beyond the scope of the
present work.

1.1 Model
We consider the standard model of an asynchronous shared-memory system, where a collection
of n processes communicate by applying operations to shared objects. Typically these
objects are atomic registers, which support a write(v) operation that changes the state
of the register to v (and returns nothing) and a read operation that returns the value of the
most recent previous write operation, or a default initial value if there is no previous write
operation. But we will also consider max registers, in which a readMax operation instead
returns the largest value of any preceding writeMax operation, or a default initial value if
there is none.

Concurrency is modeled by interleaving. An execution C0π1C1π2 . . . consists of an
alternating sequence of configurations Ci giving the state of all processes and objects in
the system, and operations πi, each of which is carried out by some process. An operation π
is enabled in a configuration C if there is a process in C that chooses π as its next operation.
The effect of applying the operation is to transition to a new configuration C ′ that updates
the state of the process executing π and the object to which it is applied. At each step, an
adversary chooses which of the enabled operations occurs.

For deterministic protocols with known initial configuration C0, an execution can be
summarized by giving a schedule π1π2 . . . , consisting only of the operations.

For randomized protocols, an adaptive adversary chooses πi with full knowledge of Ci,
including internal states of the processes. An oblivious adversary instead fixes a sequence
of process ids pi1pi2 . . . at the start of the execution, and pij

carries out the j-th step in all
executions. In both cases, the execution obtained is a random variable that depends on both
the adversary’s strategy and the outcomes of any random choices made by the processes.

The total step complexity of an execution is the number of operations carried out
by all processes during the execution. The individual step complexity is the maximum
number of operations carried out by any individual process during the execution.

The space complexity of a protocol is the total number of objects in the system, whether
they are used in a particular execution or not. This does not depend on the capacity of each
object: a register that holds one bit and a register that holds an unbounded number of bits
both count as a single object for this purpose. The allocate-on-use space complexity [9]
of an execution is the number of objects to which at least one operation is applied during
the execution.

2 Consensus using max registers

Consensus [23] has three requirements:
Termination All processes finish.
Validity The output value of every process is the input value of some process.
Agreement All processes return the same output value.
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We will be building wait-free consensus, meaning that the termination condition must
hold for each process in all executions, regardless of the relative speeds of the other processes.

For our consensus protocol, we follow the modular construction suggested in [4]. This
construction alternates conciliator objects with adopt-commit objects, and gives step
complexity and space complexity proportional to the sum of the corresponding complexities
of the conciliator and adopt-commit objects.

A conciliator object [4] is similar to a consensus protocol, but it replaces the agreement
condition with a probabilistic agreement condition, that says that all processes return
the same output with some minimum probability δ > 0.

An adopt-commit object [3, 22] abstracts the adopt-commit protocol of Gafni [15],
which is used to detect and enforce agreement obtained through other means. In addition
to an output value, it also supplies a tag adopt or commit. Termination and validity hold
as in consensus, but the agreement condition is now replaced by two new conditions:1
convergence, which says that if all inputs are equal to some value v then all processes
return 〈commit, v〉; and coherence, which says that if any process returns 〈commit, v〉 then
all processes return either 〈commit, v〉 or 〈adopt, v〉. The significance of these conditions
is that once all processes have the same input (for example, as the result of a preceding
conciliator successfully producing agreement), then all will commit, and if any process
commits even without all process having the same input, it will force all processes to agree
on their outputs, allowing the first process to safely return knowing that any others will
return the same value after the next adopt-commit.

Each execution of a conciliator has a δ chance of resulting in agreement, meaning that
a protocol using this construction finishes in 1/δ + 1 expected phases. For constant δ, this
makes the expected cost of the consensus protocol a constant multiple of the sum of the
costs of the conciliator and adopt-commit objects. So our goal will be to use max registers
to make both of these objects cost as little as possible.

2.1 Conciliator using max registers
To implement a conciliator from max registers, we construct a sifter [2] supplemented by
the persona construction of [5]. A sifter is a mechanism for getting rid of processes quickly.
The persona construction allows losers in this process to effectively take over the role of
winners by copying sufficient control information (the persona) to duplicate the winning
process’s behavior.

The intuition behind our construction is that if a sequence of s distinct random ranks is
written to a max register, only the left-to-right maxima will actually appear in the register.
If the ranks are chosen independently of each other and of the order of the writes, there are∑s

i=1
1
i = Hs ≤ 1 + ln s such maxima on average, and we get a reduction from s to O(log s)

values each time we apply this trick. This remains true if correlated duplicate ranks appear
in the sequence, so long as the random ranks are independent of the order in which they first
appear. This is enforced by having each process associate a sequence of independent random
ranks (the persona) with its input value at the start of the protocol. When another process
adopts the same value, it also adopts the same random ranks. This allows a fast process
to pick up the value of a slow process and carry it to victory – a necessary condition for
wait-freedom, since processes cannot leave until a winner is determined – without creating
correlations that the adversary can exploit in the sifter mechanism.

1 Our choice of names for these conditions follows [8].
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1:4 Consensus with Max Registers

Pseudocode for the conciliator is given in Algorithm 2.1. It uses ` = 4 + log∗ n rounds,
with an independent random rank associated with each process’s input value for each round.
The ranks can be chosen from a variety of distributions, but for simplicity we assume that
each rank is an independent uniform random integer in the range 1 through n3.

Algorithm 2.1 Conciliator using max registers.

1 procedure conciliator(v)
2 Choose random ranks r1 . . . r`

3 for i← 1 . . . ` do
4 writeMax(Mi, 〈ri, . . . , r`, v〉)
5 〈ri, . . . , r`, v〉 ← readMax(Mi)
6 end
7 return v

8 end

I Lemma 1. Algorithm 2.1 implements a conciliator with a constant probability of agreement
for sufficiently large n.

Proof. Termination and validity are immediate from inspection of the code. Probabilistic
agreement requires more work.

Define the persona of process p after 0 rounds as its initial tuple 〈r1, . . . , r`, v〉 and after i
rounds as the tuple 〈ri+1, . . . , r`, v〉 that it stores after completing its i-th readMax operation
in Line 5.

Let D be the event that all ri are distinct from each other for each i. For ri chosen
uniformly in the range 1 through n3 we will have Pr

[
D
]
≤ n−3(n

2
)
` = O(n−1 log∗ n) by the

union bound.
Let Xi be the number of distinct personae that appear across all processes after round i.

We will argue by induction that E [Xi | D] ≤ f (i)(n), where f(x) = 1 + ln x and f (i) is the
i-fold iteration of f defined by f (0)(x) = x and f (i+1)(x) = f(f (i)(x)).

Initially, E [X0 | D] = n = f0(n). For the induction step, observe that any persona after
i > 0 rounds is read from Mi and thus must be a left-to-right maximum of the values written
to Mi. The adversary is oblivious, so it cannot observe ri when scheduling the operations
on Mi; at best, it knows only which processes share the same persona. But any particular
persona 〈ri, . . . , r`, v〉 is a left-to-right maximum if and only if the first occurrence of this
persona in the sequence is a left-to-right maximum. There are Xi−1 such distinct personae,
and by symmetry a persona that appears first after j − 1 other distinct personae has a
1/j chance of being a left-to-right maximum. This gives E [Xi | D,Xi−1] =

∑Xi−1
j=1

1
j =

HXi−1 ≤ 1 + lnXi−1 = f(Xi−1). Because f is concave, Jensen’s inequality gives E [Xi | D] =
E [E [Xi | D,Xi−1] | D] ≤ E [f(Xi−1) | D] ≤ f(E [Xi−1 | D]) = f(f (i−1)(n)) = f (i)(n).

A straightforward numerical calculation shows that f(x) ≤ log2 x for x ≥ 10, which
implies that f (i+1)(n) ≤ log(i+1)

2 (n) as long as f (i)(n) ≥ 10. It follows that f (i)(n) < 10
when i = log∗ n. Applying f four more times gives f (4+log∗ n) < f (4)(10) < 1.59. So
E [X` | D] < 1.59.

Because Xi is always at least 1, X` − 1 ≥ 0, so Markov’s inequality applies to X` − 1,
giving Pr [X` ≥ 2 | D] = Pr [X` − 1 ≥ 1 | D] ≤ E [X` − 1 | D] < 0.59. We can remove the
conditioning to get Pr [X` ≥ 2] ≤ 0.59 + Pr [D] = 0.59 + o(1). This completes the proof of
probabilistic agreement. J
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2.2 Adopt-commit using max registers

Pseudocode for an adopt-commit object implemented from max registers is given in Al-
gorithm 2.2. The structure is similar to the implementation of adopt-commit from a generic
conflict detector given in [8, Algorithm 2].

Here a pair of max registers min and max serve as the conflict detector, which detects
when multiple distinct values have arrived at the adopt-commit. The mechanism for this is
that min holds the smallest input value (negated to turn the max register into a min register),
while max holds the largest, so that distinct values will cause these to diverge.

To obtain a commit, a process must successfully write its value to the proposal register
before any process with a distinct value finishes writing to both max registers. This will
cause later processes to see and adopt the same value.

Algorithm 2.2 Adopt-commit using max registers.

1 procedure adoptCommit(v)
2 writeMax(min,−v)
3 writeMax(max, v)
4 if proposal 6= ⊥ then
5 v ← proposal
6 end
7 proposal← v

8 if readMax(min) = −v and readMax(max) = v then
9 return 〈commit, v〉

10 else
11 return 〈adopt, v〉
12 end
13 end

I Lemma 2. Algorithm 2.2 implements an adopt-commit object.

Proof. Termination and validity are immediate from inspection of the code.
For convergence, suppose that all calls to adoptCommit have the same input v. Then

no value other than v is ever written to proposal or max, and no value other than −v is
ever written to min. It follows that (a) every process has value v when it reaches Line 8,
and (b) all processes read −v from min and v from max in this line, causing them to return
〈commit, v〉.

For coherence, suppose that some process p returns 〈commit, v〉. Then at the point where
p starts executing Line 8, proposal 6= ⊥, Process p subsequently reads −v from min and v
from max, which implies that at this same point no process p′ with a value v′ < v has yet
written to min and no process with a value v′ > v has yet written to max. Since a process
must do both before checking proposal in Line 4, any such process will read v from proposal
and adopt this value. J

The proposal register is assumed to be a standard atomic register, but if a max-register-
only implementation is desired, proposal can be replaced by a max register without affecting
the complexity or proof of correctness.

DISC 2019



1:6 Consensus with Max Registers

2.3 Full result

Combining Lemmas 1 and 2 gives:

I Theorem 3. Alternating Algorithms 2.1 and 2.2 implements randomized consensus for
any number of input values against an oblivious adversary, with expected individual step
complexity O(log∗ n) and expected space complexity O(log∗ n) in the allocate-on-use model.

3 Consensus using collects

If max registers are not available, we can replace them with an array of n ordinary atomic
registers over which we perform collect operations, a non-atomic operation that involves
a process reading all n registers in some arbitrary order. We use a variant of the classic
double-collect technique [24] to ensure that the value returned is in fact the maximum
value in the array at some point during the execution. We will show that this does not
impose too much additional cost and does not create opportunities for the adversary to bias
the outcome.2

For the adopt-commit object, we skip the max register implementation entirely and
simply use Gafni’s original implementation of adopt-commit from two collects [15, §4.2].

Pseudocode for the conciliator is given in Algorithm 3.1. We assume that each A[i][j] is
an atomic register that initially holds a default value ⊥ that is treated as smaller than all
non-default values.

Algorithm 3.1 Conciliator using collect. Code for process j.

1 procedure conciliator(v)
2 Choose random ranks r1 . . . r`

3 for i← 1 . . . ` do
4 A[i][j]← 〈ri, . . . , r`, v〉
5 cur← ⊥
6 repeat
7 prev← cur

// Perform collect on A[i]
8 cur← A[i][1 . . . n]
9 until prev 6= ⊥ and max(cur) = max(prev)

10 〈ri, . . . , r`, v〉 ← max(cur)
11 end
12 return v

13 end

2 An alternative might be to use an existing implementation of bounded max registers from atomic registers,
such as the original linearizable implementation of [6] or the strongly linearizable implementation of [18].

This runs into two difficulties. First, these implementations assume multi-writer registers, and there are
implementations of conciliators directly from multi-writer registers that run in O(log log n) steps [5], much
less than the Ω(log n) steps needed for a single operation of a polynomially-bounded max register [6]. Second,
neither linearizability nor strong linearizability is enough to guarantee that an implementation can be used
in place of the original atomic object without affecting the behavior of the algorithm when scheduling
is controlled by an oblivious adversary [17]. Though the stronger condition of uniform linearizability
can allow such composition [14], we are not aware of any uniformly linearizable implementations of
max registers.
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To show that this works, we must first argue that the maximum value computed in Line 10
corresponds to the actual maximum value in A[i][1 . . . n] at some point in the execution.

I Lemma 4. Let x = 〈ri, . . . , r`, v〉 be computed in Line 10 during some execution of
Algorithm 3.1. Then at some point during the execution, x is the maximum value in registers
A[i][1] through A[i][n].

Proof. First observe that each A[i][j] can only increase over time, and thus the same holds
for the maximum value in A[i].

Because x is the maximum of the non-overlapping collects that provided prev and cur, we
know that (a) the maximum value at the end of the first collect is at least x, and (b) the
maximum value at the start of the second collect is at most x. So throughout the interval
between these collects, the maximum value is exactly x. J

Applying the same argument as in Lemma 1, if Xi distinct personae with distinct random
ranks appear across all processes after i rounds, then on average there are HXi left-to-right
maxima in the sequence of values written to A[i], giving Xi+1 ≤ HXi

≤ 1 + lnXi on average.
Since each repetition of the inner loop of Algorithm 3.1 by some process requires a new
maximum, this means that (a) on average, only O(logn) collects are performed during the
first round, and (b) on average, at most O(log logn) collects are performed during subsequent
rounds. The first round dominates, giving an expected O(logn) collects per process, for an
expected individual step complexity of O(n logn). We can similarly argue that after ` rounds
there is only one surviving persona with constant probability.

As written, the algorithm uses O(n log∗ n) registers. However, we can trivially have each
process consolidate its O(log∗ n) registers A[1][j] through A[`][j] into a single register divided
into ` fields, giving an implementation with only n registers.

Applying the appropriate corrections to deal with the small chance of duplicate ranks,
we get:

I Lemma 5. Algorithm 3.1 implements a conciliator with constant agreement probability
with expected individual step complexity O(n logn) and space complexity n.

Since it is possible to implement adopt-commit using O(1) write operations and two
collects [15], and since we can consolidate all registers used by a particular process, even
across rounds, into a single register, we get

I Theorem 6. There is an implementation of randomized consensus that achieves consensus
against an oblivious adversary with expected individual step complexity O(n logn) using n
single-writer registers.

The step complexity of this algorithm compares favorably with the best previously known
implementation of consensus from single-writer registers, the O(n log2 n) algorithm of [10].
It should be noted however that the price of this improvement is that we have assumed an
oblivious adversary instead of an adaptive adversary.

4 Conclusion and open problems

We have shown that using max registers as a base object allows for a significant improvement
in the time and space complexity of randomized consensus over previous solutions based
on atomic registers. We have also shown that this approach gives improvements even for
single-writer atomic registers, by implementing max registers from collects over arrays of
single-writer registers.

DISC 2019



1:8 Consensus with Max Registers

At present there is no known non-trivial lower bound on the expected individual step
complexity of randomized consensus with an oblivious adversary, even for ordinary registers,
although a lower bound on the distribution of the individual step complexity is known [12].
So it may be that a more sophisticated algorithm could reduce the expected time for
max-register-based consensus from O(log∗ n) to as little as O(1).

Similarly, there is no stronger lower bound on the individual step complexity of consensus
implemented from single-writer registers than the trivial Ω(n) bound. Here we suspect that
a more careful analysis of the possible set of maximum values returned by concurrent single
collects could reduce the gap between this lower bound and the O(n logn) upper bound
obtained using double collects.

It is also interesting to consider what happens in a message-passing system. It is known
that the classic Attiya-Bar-Noy-Dolev (ABD) implementation of an atomic register from
asynchronous message-passing with fewer than n/2 failures [11] extends in a straightforward
way to give a linearizable implementation of a max register in O(1) time using O(n) messages
per operation [7]. However, the same problem of linearizability interacting poorly with
randomization that required using double collects in Algorithm 3.1 applies here, and it is
not clear if simply using ABD in Algorithm 2.1 would prevent even an oblivious adversary
from preserving more values than expected. As in the case of single collects, further
analysis is needed.
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