10,133 research outputs found

    Bayesian model selection in logistic regression for the detection of adverse drug reactions

    Full text link
    Motivation: Spontaneous adverse event reports have a high potential for detecting adverse drug reactions. However, due to their dimension, exploring such databases requires statistical methods. In this context, disproportionality measures are used. However, by projecting the data onto contingency tables, these methods become sensitive to the problem of co-prescriptions and masking effects. Recently, logistic regressions have been used with a Lasso type penalty to perform the detection of associations between drugs and adverse events. However, the choice of the penalty value is open to criticism while it strongly influences the results. Results: In this paper, we propose to use a logistic regression whose sparsity is viewed as a model selection challenge. Since the model space is huge, a Metropolis-Hastings algorithm carries out the model selection by maximizing the BIC criterion. Thus, we avoid the calibration of penalty or threshold. During our application on the French pharmacovigilance database, the proposed method is compared to well established approaches on a reference data set, and obtains better rates of positive and negative controls. However, many signals are not detected by the proposed method. So, we conclude that this method should be used in parallel to existing measures in pharmacovigilance.Comment: 7 pages, 3 figures, submitted to Biometrical Journa

    A Bayesian Periodogram Finds Evidence for Three Planets in 47 Ursae Majoris

    Full text link
    A Bayesian analysis of 47 Ursae Majoris (47 UMa) radial velocity data confirms and refines the properties of two previously reported planets with periods of 1079 and 2325 days and finds evidence for an additional long period planet with a period of approximately 10000 days. The three planet model is found to be 10^5 times more probable than the next most probable model which is a two planet model. The nonlinear model fitting is accomplished with a new hybrid Markov chain Monte Carlo (HMCMC) algorithm which incorporates parallel tempering, simulated annealing and genetic crossover operations. Each of these features facilitate the detection of a global minimum in chi-squared. By combining all three, the HMCMC greatly increases the probability of realizing this goal. When applied to the Kepler problem it acts as a powerful multi-planet Kepler periodogram. The measured periods are 1078 \pm 2, 2391{+100}{-87}, and 14002{+4018}{-5095}d, and the corresponding eccentricities are 0.032 \pm 0.014, 0.098{+.047}{-.096}, and 0.16{+.09}{-.16}. The results favor low eccentricity orbits for all three. Assuming the three signals (each one consistent with a Keplerian orbit) are caused by planets, the corresponding limits on planetary mass (M sin i) and semi-major axis are (2.53{+.07}{-.06}MJ, 2.10\pm0.02au), (0.54\pm0.07MJ, 3.6\pm0.1au), and (1.6{+0.3}{-0.5}MJ, 11.6{+2.1}{-2.9}au), respectively. We have also characterized a noise induced eccentricity bias and designed a correction filter that can be used as an alternate prior for eccentricity, to enhance the detection of planetary orbits of low or moderate eccentricity

    Sequentiality and Adaptivity Gains in Active Hypothesis Testing

    Full text link
    Consider a decision maker who is responsible to collect observations so as to enhance his information in a speedy manner about an underlying phenomena of interest. The policies under which the decision maker selects sensing actions can be categorized based on the following two factors: i) sequential vs. non-sequential; ii) adaptive vs. non-adaptive. Non-sequential policies collect a fixed number of observation samples and make the final decision afterwards; while under sequential policies, the sample size is not known initially and is determined by the observation outcomes. Under adaptive policies, the decision maker relies on the previous collected samples to select the next sensing action; while under non-adaptive policies, the actions are selected independent of the past observation outcomes. In this paper, performance bounds are provided for the policies in each category. Using these bounds, sequentiality gain and adaptivity gain, i.e., the gains of sequential and adaptive selection of actions are characterized.Comment: 12 double-column pages, 1 figur

    Equivalent efficiency of a simulated photon-number detector

    Get PDF
    Homodyne detection is considered as a way to improve the efficiency of communication near the single-photon level. The current lack of commercially available {\it infrared} photon-number detectors significantly reduces the mutual information accessible in such a communication channel. We consider simulating direct detection via homodyne detection. We find that our particular simulated direct detection strategy could provide limited improvement in the classical information transfer. However, we argue that homodyne detectors (and a polynomial number of linear optical elements) cannot simulate photocounters arbitrarily well, since otherwise the exponential gap between quantum and classical computers would vanish.Comment: 4 pages, 4 figure

    Context-Aware Generative Adversarial Privacy

    Full text link
    Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. On the one hand, context-free privacy solutions, such as differential privacy, provide strong privacy guarantees, but often lead to a significant reduction in utility. On the other hand, context-aware privacy solutions, such as information theoretic privacy, achieve an improved privacy-utility tradeoff, but assume that the data holder has access to dataset statistics. We circumvent these limitations by introducing a novel context-aware privacy framework called generative adversarial privacy (GAP). GAP leverages recent advancements in generative adversarial networks (GANs) to allow the data holder to learn privatization schemes from the dataset itself. Under GAP, learning the privacy mechanism is formulated as a constrained minimax game between two players: a privatizer that sanitizes the dataset in a way that limits the risk of inference attacks on the individuals' private variables, and an adversary that tries to infer the private variables from the sanitized dataset. To evaluate GAP's performance, we investigate two simple (yet canonical) statistical dataset models: (a) the binary data model, and (b) the binary Gaussian mixture model. For both models, we derive game-theoretically optimal minimax privacy mechanisms, and show that the privacy mechanisms learned from data (in a generative adversarial fashion) match the theoretically optimal ones. This demonstrates that our framework can be easily applied in practice, even in the absence of dataset statistics.Comment: Improved version of a paper accepted by Entropy Journal, Special Issue on Information Theory in Machine Learning and Data Scienc

    Detection of exomoons in simulated light curves with a regularized convolutional neural network

    Full text link
    Many moons have been detected around planets in our Solar System, but none has been detected unambiguously around any of the confirmed extrasolar planets. We test the feasibility of a supervised convolutional neural network to classify photometric transit light curves of planet-host stars and identify exomoon transits, while avoiding false positives caused by stellar variability or instrumental noise. Convolutional neural networks are known to have contributed to improving the accuracy of classification tasks. The network optimization is typically performed without studying the effect of noise on the training process. Here we design and optimize a 1D convolutional neural network to classify photometric transit light curves. We regularize the network by the total variation loss in order to remove unwanted variations in the data features. Using numerical experiments, we demonstrate the benefits of our network, which produces results comparable to or better than the standard network solutions. Most importantly, our network clearly outperforms a classical method used in exoplanet science to identify moon-like signals. Thus the proposed network is a promising approach for analyzing real transit light curves in the future
    corecore