9,079 research outputs found

    Approximation with Random Bases: Pro et Contra

    Full text link
    In this work we discuss the problem of selecting suitable approximators from families of parameterized elementary functions that are known to be dense in a Hilbert space of functions. We consider and analyze published procedures, both randomized and deterministic, for selecting elements from these families that have been shown to ensure the rate of convergence in L2L_2 norm of order O(1/N)O(1/N), where NN is the number of elements. We show that both randomized and deterministic procedures are successful if additional information about the families of functions to be approximated is provided. In the absence of such additional information one may observe exponential growth of the number of terms needed to approximate the function and/or extreme sensitivity of the outcome of the approximation to parameters. Implications of our analysis for applications of neural networks in modeling and control are illustrated with examples.Comment: arXiv admin note: text overlap with arXiv:0905.067

    Matrix Recipes for Hard Thresholding Methods

    Full text link
    In this paper, we present and analyze a new set of low-rank recovery algorithms for linear inverse problems within the class of hard thresholding methods. We provide strategies on how to set up these algorithms via basic ingredients for different configurations to achieve complexity vs. accuracy tradeoffs. Moreover, we study acceleration schemes via memory-based techniques and randomized, ϵ\epsilon-approximate matrix projections to decrease the computational costs in the recovery process. For most of the configurations, we present theoretical analysis that guarantees convergence under mild problem conditions. Simulation results demonstrate notable performance improvements as compared to state-of-the-art algorithms both in terms of reconstruction accuracy and computational complexity.Comment: 26 page

    Variance Reduction Techniques in Monte Carlo Methods

    Get PDF
    Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the introduction of computers. This increased computer power has stimulated simulation analysts to develop ever more realistic models, so that the net result has not been faster execution of simulation experiments; e.g., some modern simulation models need hours or days for a single ’run’ (one replication of one scenario or combination of simulation input values). Moreover there are some simulation models that represent rare events which have extremely small probabilities of occurrence), so even modern computer would take ’for ever’ (centuries) to execute a single run - were it not that special VRT can reduce theses excessively long runtimes to practical magnitudes.common random numbers;antithetic random numbers;importance sampling;control variates;conditioning;stratied sampling;splitting;quasi Monte Carlo
    • …
    corecore